首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
高速列车进入有缓冲结构隧道的压力变化研究   总被引:2,自引:0,他引:2  
采用高速列车空气动力学模型实验对高速列车在进入带缓冲结构隧道过程中瞬变压力传播机理进行研究。实验结果表明,缓冲结构能够减缓隧道内瞬变压力。其原因在于:缓冲结构横断面积逐渐由大变小,阻塞比逐渐由小变大,延长了压力上升时间,降低了压力梯度;另一方面,由于压缩波在缓冲结构和列车、隧道之间多次反射,降低了压力峰值。在M.S.Howe提出无缓冲结构下最大压力波变化理论基础上提出有缓冲结构时隧道内最大压力和最大压力梯度变化规律计算公式。所得结论可为隧道空气动力学研究提供参考。  相似文献   

2.
为了将地铁瞬变压力的波动控制在人体舒适度范围内,根据三维不可压缩Navier-Stokes方程和标准k-ε紊流模型,以22.73 m2的地铁区间矩形隧道为研究对象,建立隧道-列车-空气数值模型,分析地铁隧道中列车特征部位压力和压力梯度的变化规律和影响因素。研究结果表明:列车运行速度超过100 km/h后,有必要在地铁入口处设置缓冲结构;缓冲结构降低压力最大值的效果并不显著,但降低压力梯度最大值的效果显著;喇叭型缓冲结构是优选的地铁入口降压措施;缓冲结构的最佳长度为2倍隧道水力直径;缓冲结构的横断面积越大,其降压效果越好;缓冲结构的最佳开孔率为30%左右。  相似文献   

3.
横通道对缓解隧道瞬变压力的研究   总被引:1,自引:0,他引:1  
利用三维、可压缩、非定常的N-S方程和k-ε双方程湍流模型,采用有限体积法对两单线隧道之间的横通道缓解隧道内瞬变压力的影响进行了数值模拟,得到了当高速列车通过有无横通道的隧道时隧道壁面及车体表面测点的瞬变压力时间历程及其变化幅值。计算结果表明:(1)设置横通道可以有效缓解高速列车通过隧道时引起的瞬变压力;对于靠近横通道位置处的隧道壁面测点,横通道的设置可以使其压力变化幅值降低37%左右,同时可使车体表面测点的瞬变压力幅值降低30%多;(2)相同截面面积、不同截面形状的横通道,缓解效果基本相同;(3)针对参数确定的隧道,存在最佳横通道截面积值,使其缓解隧道内瞬变压力的效果最佳。  相似文献   

4.
研究目的:针对京沪高速铁路隧道,采用一维、非定常、可压缩流动模型和特征线法,通过数值计算方法,对于净空面积为100 m2的隧道,选取不同的隧道长度、列车长度、列车速度等参数对单、双线隧道瞬变压力的影响进行了敏感性分析,从而探讨隧道净空面积为100 m2时的适应性。研究结论:结合国内压力波容许标准和UIC标准进行的比较分析结果,给出了京沪高速铁路隧道内列车高速运行的密封时间要求,并建议隧道内会车时,列车速度应低于350 km/h。  相似文献   

5.
高速列车进出隧道形成的压力波带来乘客舒适度下降、隧道洞口噪声污染、威胁隧道洞口建筑物安全等多种不利影响。为了深入研究高速铁路隧道洞口微压波特性,确定各种缓冲结构在控制微压波方面的效果,提出缓冲结构设计的合理方案。通过模拟实验和数值分析,对主要缓冲结构设置形式进行了分析,并针对艰险山区隧道洞口提出了缓冲结构设计的合理方案。  相似文献   

6.
高速列车在隧道内运行引起强烈的空气动力,本文给出隧道内瞬变压力的计算方法,对瞬变压力影响下接触网跨距的取值进行了有限元分析,并提出了跨距的合理取值.  相似文献   

7.
以高速铁路隧道列车车内舒适度标准为依据,结合单维特征线法的计算结果给出了不同密封性能列车对应的瞬变压力超标隧道长度区间,并分析得出列车车速、车长和动态密封指数对超标隧道长度区间的影响规律和不存在瞬变压力超标隧道长度区间时动态密封指数应满足的要求,最后对相关设计工作提出了建议。  相似文献   

8.
高速列车驶入隧道时产生初始压缩波并向隧道出口方向辐射形成压力脉冲波,影响居民的身心健康,带来了严重的环境问题。文章以国内时速400公里的高速列车为研究对象,基于CFD(计算流体动力学)软件搭建三维数值模拟计算模型,研究高速列车驶入隧道时产生初始压缩波最大压力梯度值的时空演变过程,并分析比较不同车高和在隧道洞口增加缓冲结构对隧道初始压缩波的影响。模拟计算结果显示:车高越高,高速列车驶入隧道时产生的初始压缩波压力峰值越大,对应的最大压力梯度值也越大;隧道洞口设置缓冲结构时,不同车高对初始压缩波最大压力梯度值的影响规律与无缓冲结构情况下基本保持一致,但最大压力梯度值大幅下降。  相似文献   

9.
研究目的:通过计算,分析我国双线隧道中存在的瞬变压力问题,并提出相应的缓解措施。研究方法:以兰武二线中的双线隧道为例,采用公式法和M atlab多项式拟合出列车速度与最大瞬变压力的关系曲线。研究结果:计算结果表明:在上古浪峡隧道中,当列车速度超过145 km/h时,瞬变压力不能满足旅客乘车的“舒适度”标准。研究结论:提速后,我国既有线上一些双线隧道的瞬变压力不能满足旅客乘车的“舒适度”标准。在以后的建设中,应根据具体情况采取主动或被动缓解措施。  相似文献   

10.
利用计算流体力学软件FLUENT,基于三维可压缩、黏性、非定常流场数值模拟方法,建立隧道-空气-列车三维数值仿真模型.针对高海拔地区隧道空气动力学效应,研究列车以300 km/h的速度运行通过不同海拔隧道时产生的隧道内瞬变压力及车体表面瞬变压力的变化特征,分析大气压和温度等因素对瞬变压力的影响规律,得到海拔高度与瞬变压...  相似文献   

11.
高速磁浮列车通过隧道过程中将引起剧烈的压力波动,造成司乘人员耳感舒适性、车体及其零部件、隧道衬砌及辅助设施的气动疲劳寿命问题,有必要对磁浮列车高速通过隧道时压力波效应进行研究。采用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法对单列车通过隧道时车体压力载荷进行数值模拟研究,初步揭示隧道长度、列车速度、阻塞比对车外压力波的影响规律;得出时速500~600 km/h速度下基于最大正负值和最大压力峰峰值的最不利隧道长度;论证了列车通过隧道产生的压力波幅值与列车速度平方成正比的适用范围,总结了压力最值与速度的拟合关系式。本文研究方法和结果可为车体设计选用气动载荷提供参考依据。  相似文献   

12.
随着列车运行速度的提高,隧道空气动力学问题越来越突出。2005年5月在遂渝线进行了高速列车过隧道试验,对列车和隧道内空气压力变化、隧道内列车风和隧道口微气压波等参数进行了测试。结果表明:隧道内列车风风速与列车运行速度成线性关系,并且与车头和车尾的外形、列车长度、隧道截面面积及其长度等因素有很大关系;隧道壁面压力近似与列车运行速度的平方成正比;同等速度条件下,钝头型的25T提速客车引起的隧道壁面压力变化幅值比流线型动车组的大38.6%;由于双层集装箱列车较高且集装箱间的间距较大,致使同等速度下引起的隧道壁面压力变化最大;隧道入口的压力变化明显大于隧道出口的压力变化,在隧道口附近,三维效应非常明显,且每种车型均不同。因此,将列车和隧道耦合起来设计出合理的隧道和列车截面形状,是减小隧道空气动力学效应的有效途径。  相似文献   

13.
开孔缓冲结构条件下的隧道单车压力波特征数值分析   总被引:1,自引:0,他引:1  
在假定隧道内空气流通截面是时间和流动距离的二元函数条件下,根据一维可压缩非定常不等熵流动理论与广义黎曼变量特征线法,发展了高速列车通过设置开孔缓冲结构隧道的单车压力波计算方法,并进行开孔缓冲结构不同参数对初始压缩波强度和压力梯度的分析计算,揭示了开孔缓冲结构的空气动力学特征,对探讨减缓洞口微压波提供了一种分析方法。  相似文献   

14.
高速铁路隧道壁面气动荷载是隧道结构破坏的主要诱因之一,了解并掌握其特征对高速铁路隧道结构设计与安全营运具有重要的理论意义与工程价值。通过论述高速铁路隧道壁面气动荷载特征与现场实车测试、动模型试验以及数值仿真模拟三种研究手段的技术现状与未来发展趋势。总结归纳得出:(1)列车驶入隧道前,壁面气动荷载峰值小、持续时间短;列车在隧道内行驶时,壁面气动荷载表现为正负峰值不等的不规则变化规律;列车车尾驶出隧道后,气动荷载表现为周期性正负峰值交替的衰减规律。(2)三维光纤贴壁线性布置技术利于实现隧道全断面、全长测点布置,且具有重复利用率高,试验费用低、工作量少等优点,可作为现场实车测试过程中数据采集系统的一个重要比选方案,电机控制能进一步提高模型列车运行速度的控制精度,可作为未来动模型试验系统动力控制的优选技术之一。  相似文献   

15.
为研究高速列车过隧道时对接触网系统安全性的影响,采用数值模拟的方法,利用滑移网格技术,对不同编组的高速列车以350 km/h的速度分别通过单线隧道和双线隧道的过程进行仿真,通过监测吊柱位置处的气流速度和气体压力,得到隧道内活塞风特性;基于气动特性仿真结果,对接触线风振响应进行模拟仿真,得到隧道内接触线位移偏量范围。结果表明,列车编组越多,隧道断面越小,列车车速越大,形成的列车风速度越大,气动特性越显著;列车进入隧道入口瞬间,接触线有最大正向位移偏量为2.92 mm。  相似文献   

16.
近年来,在多条高速线路上对各型高速列车进行了一系列隧道通过和隧道交会试验。现通过对这些空气动力学实车试验数据进行详细分析,获得了高速列车通过隧道和在隧道内交会过程中的压力波特性,以及压力波随列车长度、运行速度和隧道长度等影响因素变化的规律。  相似文献   

17.
无竖井单线隧道活塞风影响因素分析   总被引:1,自引:0,他引:1  
采用非恒定流活塞风计算理论,按列车行驶在单线无竖井隧道中的不同位置,分四种情况(列车部分进入隧道,列车全部进入隧道,列车部分驶出隧道,列车全部驶出隧道后活塞风的衰减过程)建立了简化的活塞风分析数学模型.在此基础上,通过MATLAB软件进行数值求解,得到列车经过某区间隧道时的活塞风速度变化情况.分析了列车运行速度、列车长度、列车对隧道的阻塞比以及区间隧道长度对活塞风的影响.本方法可以作为列车以不同速度行驶在各种单线、无竖井隧道内活塞风速度的试用计算工具.  相似文献   

18.
高速列车驶入隧道端口瞬间在车头前形成压缩波。该压缩波沿隧道以声速向出口端处传播,并在洞外形成微压波。本文根据声学中无限大障板圆形活塞的辐射模型,开发了已知隧道出口端内压缩波压力梯度和大小时的微压波计算程序,并采用国外试验结果验证了程序的正确性。结合拟议的我国高速铁路隧道特征,初步分析了洞口微压波的主要影响因素,显示列车速度、隧道断面面积影响较大。微压波的大小与观测点有很大关系,这对于判断微压波的强弱、危害及其标准研究有很大关系。结果分析也说明所建程序的合理性与简便性,是一种适合工程设计方案比选的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号