首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
Sampling campaign was conducted over six weeks to determine particulate matter (PM) concentrations from Sydney Trains airport line (T2) at both underground and ground levels using DustTrak. Dust samples were collected and analysed for 12 metals (Fe, Ca, Mn, Cr, Zn, Cu, Pb, Al, Co, Ni, Ba and Na) by atomic emission spectroscopy. Average underground PM10 and PM2.5 concentrations from inside the trains were 2.8 and 2.5 times greater than at ground level. Similarly, PM10 and PM2.5 concentrations on underground platforms were 2.7 and 2.5 times greater than ground level platforms. Average underground PM concentrations exceeded the national air quality standards for both PM10 (50 µg/m3) and PM2.5 (25 µg/m3). Correlation analysis showed a strong to moderate association between PM concentrations at ground level and background PM concentrations (r2 from 0.952 to 0.500). The findings suggested that underground PM concentrations were less influenced by the ambient background than at ground level. The metal concentrations decreased in the order of Fe, Cr, Ca, Al, Na, Ba, Mn, Zn, Cu, Ni, Co and Pb. The pollution index (PI) and enrichment factor (EF) values were calculated to identify the levels and sources of contamination in the underground railway microenvironments. PM was remarkably rich in Fe with a mean concentration of 73.51 mg/g and EF of 61.31, followed by Ni and Cr. These results noticeably indicated a high level of metal contamination in the underground environments, with the principal contribution from track abrasion and wear processes.  相似文献   

2.
Studies on the natural human exposures to fine particulate matter (PM2.5) and their elements composition are practically non-existent in South America. In order to understand the natural exposure of the typical Brazilian population to PM2.5 and their trace element composition, we measured PM2.5 concentrations and collected mass on filters for nine continuous hours during a typical workday of volunteers. In addition, bus routes were performed at peak and non-peak periods, mimicking the routine activity of the population. Mean concentrations of PM2.5 in the bus and car groups were similar while the fraction of BCe was higher for the bus group. For all routes, mean PM2.5 concentrations were higher during peak than non-peak hours, with an average of 43.5 ± 33.1 μg m−3 and 14.3 ± 10.2 μg m−3, respectively. The trace elements S, K and Na originated mainly from vehicle emissions; Na was associated with the presence of biofuel in diesel. Toxic elements (Pb, Cr, Cu, Ni, Zn, Mn) were found at low levels as evident by the total hazard index that ranged from 2.15 × 10−03 to 1.38 for volunteers. For all routes, the hazard index ranged from 2.25 × 10−03 to 5.03. Average PM2.5 respiratory deposition dose was estimated to be 0.60 μg/kg-hour for peak hours. Potential health damages to people during their movements and at workplaces close to the traffic were identified. Improvements in the design of the building to reduce the entrance of air pollutants as well as the use of filters in the buses could help to limit population exposure.  相似文献   

3.
A detailed investigation was conducted to study the sources of particulate matter in the vicinity of an urban road in Žilina. To determine the amount of particulate matter (PM10, PM2.5 and PM1) present in the ambient air, a reference gravimetric method was used. The main objective of this contribution was to identify the sources of these particles by means of statistical methods, specifically principal component analysis (PCA), factor analysis (FA), and absolute principal component scores (APCS), as well as using the presence of 17 metals in the particulate matter (Na, Mg, Al, Ca, V, Cr, Fe, Mn, Ni, Cu, Zn, As, Mo, Sb, Cd, Ba, Pb). To identify the metals in the particulate matter samples and to determine their abundances, spectroscopic methods were used, specifically inductively coupled plasma mass spectrometry (ICP-MS). Each of these metals may come from a specific source, such as the burning of fossil fuels in fossil fuel power plants; local heating of households; the burning of liquefied fossil fuels in the combustion engines of vehicles; the burning of coal and wood; non-combustion related emissions resulting from vehicular traffic; resuspension of traffic-related dust; and industry. Diesel vehicles and non-combustion emissions from road traffic have been identified as two key sources of the particulate matter. The results reveal that non-combustion emissions, which are associated with the elements Na, Fe, Mn, Ni, Zn, Mo, Sb, Cd, and Pb, are the major contributors, followed by combustion emissions from diesel vehicles, which are associated with the elements Mg, Ca, and Ba.  相似文献   

4.
The main challenge facing the air quality management authorities in most cities is meeting the air quality limits and objectives in areas where road traffic is high. The difficulty and uncertainties associated with the estimation and prediction of the road traffic contribution to the overall air quality levels is the major contributing factor. In this paper, particulate matter (PM10) data from 10 monitoring sites in London was investigated with a view to estimating and developing Artificial Neural Network models (ANN) for predicting the impact of the road traffic on the levels of PM10 concentration in London. Twin studies in conjunction with bivariate polar plots were used to identify and estimate the contribution of road traffic and other sources of PM10 at the monitoring sites. The road traffic was found to have contributed between 24% and 62% of the hourly average roadside PM10 concentrations. The ANN models performed well in predicting the road contributions with their R-values ranging between 0.6 and 0.9, FAC2 between 0.6 and 0.95, and the normalised mean bias between 0.01 and 0.11. The hourly emission rates of the vehicles were found to be the most contributing input variables to the outputs of the ANN models followed by background PM10, gaseous pollutants and meteorological variables respectively.  相似文献   

5.
Traffic is the largest contributor (37%) to urban air pollution in India. During commuting, passengers are significantly exposed to pollutants. We carried out a study on a National Highway (NH) in India to measure personal exposure to Particulate Matter (PM) in five travel modes. PM2.5 concentrations showed the following trend: Bus > Car FA (fresh air mode of air condition) > Bus AC > Car > Car RC (re-circulation mode of air condition). Highest and lowest concentrations of PM10 were observed in Bus (134 ± 47 µg m−3) and Car RC (20 ± 5 µg m−3), respectively. The exposures were highest at the rear seats during the Bus AC journeys. In Car FA, the contribution of PM1 to total concentrations was dominant (61%). Travel modes explained highest variabilities in PM10, PM2.5 and PM1 concentrations. In all travel modes, the highest particle counts were observed for PM0.3–0.5. PM>0.5–5.0 counts during Bus journeys were comparatively higher than remaining modes. Deposition doses of passengers were as high as 3.22 µg of PM10 (in Bus), 0.66 µg of PM2.5 (in Bus) and 0.06 µg of PM1 (in Bus AC) during the ~1 h journey. Our study revealed that Car RC is the safest mode of travel, both in terms of personal exposures and PM depositions in respiratory system. The results from this study can be used to target efforts to reduce personal exposure of highway commuters.  相似文献   

6.
In this study, real-time monitoring campaigns were conducted in two tunnels (Line A and Line B) at a subway station in Shanghai, including temperature, relative humidity, PM1, PM2.5 and PM10, in order to understand the climate and PM characteristics in the transportation microenvironment. In addition, collected floor dust particles in the tunnel were analyzed by ICP for their metal elemental composition. Strong correlations occurred between all PM levels and meteorological parameters in the tunnel of Line A (with platform screen doors), in comparison with the weak correlations between such parameters in the tunnel of Line B (without platform screen doors). PM2.5 and PM10 between peak hours and off-peak hours for both lines presented significant differences (p < 0.05), respectively. Nevertheless, PM1 showed a different pattern, with p > 0.05 for Line A and p < 0.05 for Line B, respectively. In addition, statistical results concluded that PM had an evident weekly variation for both lines. Friday was the highest day of all particulate matters in monitoring periods for both lines. Ratios of PM1/PM10 and PM2.5/PM10 were high when trains were out of service and low when trains were in service. Relative abundance of metal elements detected from floor dust particles proved that floor dust particles in tunnels might be a major source of airborne PM in the subway microenvironments, with Fe as the most abundant metal element, followed by Ca, Al, Mg, Mn, Zn, Cu, Cr, Ni, Pb and Hg.  相似文献   

7.
Air quality inside transportation carriages has become a public concern. A comprehensive measurement campaign was conducted to examine the commuters’ exposure to PM2.5 (dp  2.5 μm) and CO2 in Shanghai metro system under different conditions. The PM2.5 and CO2 concentrations inside all the measured metro lines were observed at 84 ± 42 μg/m3 and 1253.1 ± 449.1 ppm, respectively. The factors that determine the in-carriage PM2.5 and CO2 concentrations were quantitatively investigated. The metro in-carriage PM2.5 concentrations were significantly affected by the ventilation systems, out-carriage PM2.5 concentrations and the passenger numbers. The largest in-carriage PM2.5 and CO2 concentrations were observed at 132 μg/m3 and 1855.0 ppm inside the carriages equipped with the oldest ventilation systems. The average PM2.5 and CO2 concentrations increased by 24.14% and 9.93% as the metro was driven from underground to overground. The average in-carriage PM2.5 concentrations increased by 17.19% and CO2 concentration decreased by 16.97% as the metro was driven from urban to the suburban area. It was found that PM2.5 concentration is proportional to the on-board passenger number at a ratio of 0.4 μg/m3·passenger. A mass-balance model was developed to estimate the in-carriage PM2.5 concentration under different driving conditions.  相似文献   

8.
The concentrations of particulate matter, PM2.5, PM10, and TSP at an urban roadside and an urban background station are analyzed. Data collected over a 10 year period are analyzed. The concentrations of the particulates measured at the urban site are systematically larger than at the background station. The mean PM values at the former also exhibit a slight fall over the decade unlike those at the background station. Overall, the particulate matters at both locations are in an intermediate range of global level, e.g., approximately two times lower than those in other Asian regions but higher than in Europe.  相似文献   

9.
The High Line is an elevated public park in New York City, transformed from an unused freight rail line. Pedestrians walking through Manhattan’s West Side can walk either on the High Line or on a footpath below. Using Manhattan as a laboratory, this paper offers a combined assessment of noise and particulate matter pollution for its pedestrians. Noise and PM2.5 levels were recorded simultaneously for two cases (i) pedestrians walking on a footpath alongside road traffic and (ii) pedestrians walking on the elevated High Line. Testing took places over three days in autumn 2014. Results were analysed to investigate if pedestrians using the High Line would have a lower pollution exposure to those using the footpath below. Results showed statistically significant differences between the upper and lower levels in exposure to both pollution types. In order to quantify the overall impact, results are expressed through a combined air–noise pollution index. This index indicates that the average reduction in PM2.5 and noise pollution along the High Line compared to the footpath below is approximately 37%.  相似文献   

10.
This study investigates the effect of traffic volume and speed data on the simulation of vehicle emissions and hotspot analysis. Data from a microwave radar and video cameras were first used directly for emission modelling. They were then used as input to a traffic simulation model whereby vehicle drive cycles were extracted to estimate emissions. To reach this objective, hourly traffic data were collected from three periods including morning peak (6–9 am), midday (11–2 pm), and afternoon peak (3–6 pm) on a weekday (June 23, 2016) along a high-volume corridor in Toronto, Canada. Traffic volumes were detected by a single radar and two video cameras operated by the Southern Ontario Centre for Atmospheric Aerosol Research. Traffic volume and composition derived from the radar had lower accuracy than the video camera data and the radar performance varied by lane exhibiting poorer performance in the remote lanes. Radar speeds collected at a single point on the corridor had higher variability than simulated traffic speeds, and average speeds were closer after model calibration. Traffic emissions of nitrogen oxides (NOx) and particulate matter (PM10 and PM2.5) were estimated using radar data as well as using simulated traffic based on various speed aggregation methods. Our results illustrate the range of emission estimates (NOx: 4.0–27.0 g; PM10: 0.3–4.8 g; PM2.5: 0.2–1.3 g) for the corridor. The estimates based on radar speeds were at least three times lower than emissions derived from simulated vehicle trajectories. Finally, the PM10 and PM2.5 near-road concentrations derived from emissions based on simulated speeds were two or three times higher than concentrations based on emissions derived using radar data. Our findings are relevant for project-level emission inventories and PM hot-spot analysis; caution must be exercised when using raw radar data for emission modeling purposes.  相似文献   

11.
Shipping is a growing transport sector representing a relevant share of atmospheric pollutant emissions at global scale. In the Mediterranean Sea, shipping affects air quality of coastal urban areas with potential hazardous effects on both human health and climate. The high number of different approaches for investigating this aspect limits the comparability of results. Furthermore, limited information regarding the inter-annual trends of shipping impacts is available. In this work, an approach integrating emission inventory, numerical modelling (WRF-CAMx modelling system), and experimental measurements at high and low temporal resolution is used to investigate air quality shipping impact in the Adriatic/Ionian area focusing on four port-cities: Brindisi and Venice (Italy), Patras (Greece), and Rijeka (Croatia). Results showed shipping emissions of particulate matter (PM) and NOx comparable to road traffic emissions at all port-cities, with larger contributions to local SO2 emissions. Contributions to PM2.5 ranged between 0.5% (Rijeka) and 7.4% (Brindisi), those to PM10 were between 0.3% (Rijeka) and 5.8% (Brindisi). Contributions to particle number concentration (PNC) showed an impact 2–4 times larger with respect to that on mass concentrations. Shipping impact on gaseous pollutants are larger than those to PM. The contribution to total polycyclic aromatic hydrocarbon (PAHs) concentrations was 82% in Venice and 56% in Brindisi, with a different partition gas-particle because of different meteorological conditions. The inter-annual trends analysis showed the primary contribution to PM concentrations decreasing, due to the implementation of the European legislation on the use of low-sulphur content fuels. This effect was not present on other pollutants like PAHs.  相似文献   

12.
As a response to profoundly poor air quality and associated environmental justice concerns in the San Joaquin Valley region in California, the Tune In & Tune Up (TI&TU) program provides residents with free vehicle emissions testing and vouchers for smog repair. We used data on approximately 19,000 repaired TI&TU vehicles from 2012 to 2018, and several estimation techniques, to quantify a range of nitrogen oxides (NOX) emissions prevented as a result of the program. We then calculated resulting mortality impacts from reduced exposure to fine particulate matter (PM2.5) in the form of secondary nitrates. After applying a novel smog repair emissions abatement depreciation function, we find that six years of operation of the TI&TU program has reduced NOX emissions by approximately 53–302 tons by the end of 2018. Using a concentration response function for ambient PM2.5, we found that between 0.055 and 0.31 premature deaths have also been avoided. We present multiple methods for assessing public health impacts, which can be used as guidance for evaluating similar transportation-based emission reduction programs.  相似文献   

13.
Atmospheric pollutant dispersion near sources is typically simulated by Gaussian models because of their efficient compromise between reasonable accuracy and manageable computational time. However, the standard Gaussian dispersion formula applies downwind of a source under advective conditions with a well-defined wind direction and cannot calculate air pollutant concentrations under calm conditions with fluctuating wind direction and/or upwind of the emission source. Attempts have been made to address atmospheric dispersion under such conditions. This work evaluates the performance of standard and modified Gaussian plume models using measurements of NO2, PM10, PM2.5, five inorganic ions and seven metals conducted near a freeway in Grenoble, France, during 11–27 September 2011. The formulation for calm conditions significantly improves model performance. However, it appears that atmospheric dispersion due to vehicle-induced turbulence is still underestimated. Furthermore, model performance is poor for particulate species unless road dust resuspension by traffic is explicitly taken into account.  相似文献   

14.
Detailed NOx, SO2 and PM2.5 emissions have been estimated for cruise ships in the five busiest Greek ports (i.e. Piraeus, Santorini, Mykonos, Corfu and Katakolo) for year 2013. The emissions were analyzed in terms of gas species, seasonality and activity. The total in-port inventory of cruise shipping accounted to 2742.7 tons: with NOx being dominant (1887.5 tons), followed by SO2 and PM2.5 (760.9 and 94.3 tons respectively). Emissions during hotelling corresponded to 88.5% of total and have significantly outweighed those produced during ships’ maneuvering activities (11.5% of total). Seasonality was found to play a major role, as summer emissions and associated impacts were significantly augmented. The anticipated health impacts of ship emissions can reach to €24.3 million or to €5.3 per passenger proving the necessity of control of the emissions produced by cruise ships in port cities or policy and measures towards a more efficient cruise industry.  相似文献   

15.
This study looks at the singling out of a multi-parameter criterion for choosing conventional or innovative roundabout layouts, by taking functional, environmental and economic aspects into consideration. The performances of three conventional roundabouts (with different lane number at entries and through the ring), turbo-roundabouts and roundabouts with right-turn bypass lane on all the arms (flower roundabouts) have been compared in terms of vehicle delays and pollutant (carbon dioxide, nitrogen oxides, particle pollution (PM10 and PM2.5)) emissions. By means of closed-form capacity models and with the help of COPERT IV© software, several traffic simulations have been carried out, referred to yearly peak flow values Qmax and ranging between 1300 and 3300 veh/h, starting from a typical annual traffic demand curve in urban areas. The estimation of cumulative vehicle delays and annual pollutant emissions, together with construction and maintenance costs has allowed working out overall costs for each roundabout under consideration, depending on the traffic demand. Thus, the proposed model allows finding the most cost-effective geometric solution as to overall costs for a comprehensive case record of traffic values.  相似文献   

16.
A novel methodology that provides more detailed estimates of vehicular polluting emissions is offered, in order to contribute to the improvement and the precision of emission inventories of vehicle sources through the consideration of instantaneous speed changes or acceleration instead of average vehicular speeds. This paper presents the construction and application of an instantaneous emissions model designated hereunder as “Transims’s Snapshots-Based Emissions”, which is set on a Geographic Information System that incorporates instantaneous fuel consumption factors and fuel-based emission factors to attain highest resolution of both, spatial and temporal distribution of vehicular polluting emissions based on traffic simulation through cellular automata with TRANSIMS. This work was applied to the road network of the Mexico City Metropolitan Area as case study. The development of this powerful tool led to obtaining 86,400 maps of the spatial and temporal distribution of vehicular emissions per vehicle circulating on the road network, including the following pollutants: carbon monoxide and carbon dioxide, nitrogen oxides, total hydrocarbons, sulfur oxides, polycyclic aromatic hydrocarbons, black carbon, particles PM10 and PM2.5. The said maps allowed identification with highest level of detail, of the emissions and Hot-spots of fuel consumption. Also, the model permitted to obtain the emissions’ longitudinal profiles of a given vehicle along its route. This study shows that the integration method of the polynomial regression models represents an opportunity for each city to develop more easily and openly its own regional emissions models without requiring deeper programming knowledge.  相似文献   

17.
In-cabin exposure has increased in recent years due to longer commute and/or prolonged times in cars. The intrusion of the vehicle’s own exhaust into the passenger’s compartment has been recognized as a process that amplifies in-cabin passenger exposure. Quantifying its contribution is hampered by uncertainties associated with its measurement method such as trace tests and the lack of data regarding certain critical physical parameters, particularly those pertaining to air exchange rate (AER) and particulate matter deposition rate (DR). In this study, we present a hybrid methodology combining field measurements with a single-zone mass balance to estimate these parameters as well as the source term that represents vehicle self-pollution. In- and out-vehicle carbon monoxide (CO) and fine particulate matter (PM2.5) were monitored concurrently in test vehicles under idle and moving conditions using several common ventilation modes. In addition to defining a hybrid methodology to characterize the underlying physical parameters, this study found that vehicle self-pollution can account for approximately 15 and 30% of CO and PM2.5 exposure experienced by vehicle occupants respectively. Vehicle self-exhaust intrusion may constitute a significant PM exposure route for vehicle-based occupations or commuters with prolonged time in vehicles.  相似文献   

18.
ABSTRACT

This study estimated the external cost of air pollution from shipping by means of a meta-regression analysis, which has not been made before. Three pollutants, which were included in most of the primary studies, were considered: nitrogen oxides (NOx), sulphur dioxides (SO2) and particulate matters with a diameter of max 2.5 micrometres (PM2.5). All primary studies included damages of health and a majority added impacts on agriculture and estimated the cost of air pollutants by transferring cost estimates from studies on costs of air emissions from transports in Europe. Different regression models and estimators were used and robust results were found of statistically significant emission elasticities of below one, i.e. total external costs increase by less than 1% when emissions increase by 1%. There was a small variation between the pollutants, with the highest elasticity for PM2.5 and lowest for NOx. Calculations of the marginal external cost of the pollutants showed the same pattern, with this cost being approximately six times higher for PM2.5 than for the other pollutants. Common to all pollutants was that the marginal external cost decreases when emission increases. Another robust result was a significant increase in the cost of studies published in journals compared with other publication outlets. These findings point out some caution when transferring constant external unit cost of air pollutant from shipping, which is much applied in the literature, and the cost functions estimated in this study could thus provide a complementary transfer mechanism.  相似文献   

19.
One of the major drawbacks of conventional air quality models is their inability in accurately predicting extreme air pollutant concentrations. Hybrid modelling is one of the techniques that estimates/predicts the ‘entire range’ of the distribution of pollutant concentrations by combining the deterministic based models (capable in predicting average range) with suitable statistical (probability) distribution models (capable in predicting extreme range). This research paper describes system based approach in developing hybrid model to predict hourly averages as well as extreme percentile ranges of NOx and PM2.5 concentrations at two urban locations having complex traffic heterogeneity, highly variable tropical meteorology and different geographical characteristics. At one of the selected locations i.e. Delhi megacity, during winters, hybridization of AERMOD and Lognormal predicts NOx and PM2.5 concentrations satisfactorily with index of agreement ‘d’ values of 0.98–0.99, respectively; however, during summers, AERMOD-Log-logistic and AERMOD-Lognormal are best predicting NOx and PM2.5 concentrations with d values of 0.98–0.96, respectively. In another, i.e., Chennai, a coastal megacity, AERMOD-Lognormal predicts PM2.5 concentrations satisfactorily with d values of 0.98 and 0.99 during winter and summer seasons, respectively. Further, hybrid model has also been used to evaluate regulatory compliance.  相似文献   

20.
Based on the national emission inventory data from different countries, heavy-duty trucks are the highest on-road PM2.5 emitters and their representation is estimated disproportionately using current modeling methods. This study expands current understanding of the impact of heavy-duty truck movement on the overall PM2.5 pollution in urban areas through an integrated data-driven modeling methodology that could more closely represent the truck transportation activities. A detailed integrated modeling methodology is presented in the paper to estimate urban truck related PM2.5 pollution by using a robust spatial regression-based truck activity model, the mobile source emission and Gaussian dispersion models. In this research, finely resolved spatial–temporal emissions were calculated using bottom-up approach, where hourly truck activity and detailed truck-class specific emissions rates are used as inputs. To validate the proposed methodology, the Cincinnati urban area was selected as a case study site and the proposed truck model was used with U.S. EPA’s MOVES and AERMOD models. The heavy-duty truck released PM2.5 pollution is estimated using observed concentrations at the urban air quality monitoring stations. The monthly air quality trend estimated using our methodology matches very well with the observed trend at two different continuous monitoring stations with Spearman’s rank correlation coefficient of 0.885. Based on emission model results, it is found that 71 percent of the urban mobile-source PM2.5 emissions are caused by trucks and also 21 percent of the urban overall ambient PM2.5 concentrations can be attributed to trucks in Cincinnati urban area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号