首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
停车视距作为影响行车安全的重要因素,是公路设计中的强制性控制指标之一。曲线路段中央分隔带防眩设施和路侧护栏、边坡等均可能限制驾驶人的视线,导致停车视距不足。根据《路线规范》中现有高速公路横断面组成及其宽度,采用无人机采集了3条不同设计速度、不同横断面类型的高速公路不同车道内不同车型的横向位置视频,采用图像等比例的分析方法,提取了车辆横向位置数据后,采用统计分析的方法,得到了85%位的高速公路不同车道内不同车型驾驶人视点横向位置,进而确定了填方、挖方、隧道3种路段不同车型和偏向情况下的横净距。基于《路线规范》停车视距,考虑不同曲线偏向时视线受影响最不利车道与车型,根据曲线路段停车视距与横净距和圆曲线半径之间的几何关系,推导了曲线路段满足通车视距的最小圆曲线半径计算公式,并提出了填方、挖方、隧道,这3种路段曲线右偏与左偏两种情况下满足停车视距的圆曲线最小半径指标建议值。结果表明:对右偏圆曲线,《路线规范》中规定的圆曲线最小半径一般值能满足小客车的停车视距要求,也能满足曲线隧道内纵坡大于3%时货车停车视距,但不满足下坡或纵坡小于等于3%时货车停车视距;对左偏曲线,不满足小客车和大货车的停车视距,应取《路线规范》规定的圆曲线最小半径一般值的1.8~2.25倍。  相似文献   

2.
基于国内外对于匝道横断面及其各组成部分宽度等方面的研究成果分析总结,对我国运营车辆进行调研,提出了不同车型的分类标准,结合我国当前常见车型对规范中车型尺寸进行了修正。在选定小客车与大型车代表车型的基础上,建立了横断面宽度影响模型,使用被多国规范所采纳的斯特拉霍夫经验公式和波良可夫经验公式对不同车型专用匝道车道的宽度进行了计算,并提出了相应的匝道车道宽度推荐值。基于驾驶员心理特性和停车视距的因素,在考虑侧向余宽、车身宽度的基础上,建立了满足驾驶人停车视距需要的不同圆曲线半径对应的匝道侧向净距值计算模型。结合匝道车道设计宽度,提出了左侧硬路肩宽度推荐值。从硬路肩紧急停车的功能出发,建立了满足紧急停车需求的匝道右侧硬路肩宽度计算模型,提出了不同设计速度下的右侧硬路肩宽度推荐值。根据车辆的转向和转动半径,建立了车辆行驶轨迹的几何模型。以大型车宽度为最不利条件,在车辆转向理论研究的基础上,根据圆曲线设计半径和匝道车道数计算了匝道加宽位置和加宽值宽。根据驾驶员视点位置和车辆运行特征建立了曲线内侧车道视距计算模型,从而得到了不同设计速度的侧向余宽。综合考虑匝道车道宽度和路肩宽度研究结果,提出了匝道总体断面宽度推荐值。  相似文献   

3.
为了研究高速公路停车视距不足路段交通运行仍然较为平稳的问题,提出多车道高速公路内外侧车道停车视距计算参数采用不同取值方法。当车辆在高速公路内侧车道驶入较小的圆曲线路段时,驾驶员处于有预期的高警惕性驾驶状态,如果前方发现障碍物所做出紧急制动停车决策的反应时间要短于其他车道上的车辆;基于汽车制动减速度与高速公路路面摩阻力系数计算方法的反应时间:有预期的高警惕性驾驶状态紧急制动反应时间可取1.5 s,计算得到的停车视距称为"紧急制动停车视距",适用于高速公路内侧车道;舒适制动反应时间取2.5 s,计算得到的停车视距称为"舒适制动停车视距",其值与规范值基本一致,适用于高速公路内侧车道除外的其他车道。结果表明:当设计速度为80 km/h时,紧急制动停车视距所需要的圆曲线最小半径值与规范中圆曲线最小半径一般值基本一致,结合既有高速公路所谓停车视距不足路段交通运行平稳的调查,认为高速公路内侧车道采用紧急制动停车视距较为合理;当设计速度为100 km/h或120 km/h时,紧急制动停车视距所需要的圆曲线最小半径较规范中规定的圆曲线最小半径一般值大较多,不满足紧急制动停车视距要求的路段应采取限速等措施。  相似文献   

4.
高等级公路中央分隔带曲线外侧车道停车视距受分隔带内防眩设施的影响,易造成视距不良,影响行车安全。文中根据汽车在中央分隔带曲线外侧车道行驶的特点,计算满足停车视距要求的圆曲线最小半径,分析了曲线半径对横净距的影响,并提出了改善横净距的措施。  相似文献   

5.
为满足匝道曲线路段停车视距要求,采用二维停车视距计算方法(横净距法),在考虑匝道所有横断面和路基类型的情况下,分别计算了大小型车在不同设计条件下的横净距数值,以及满足不同设计速度停车视距要求的最小圆曲线半径值。结果表明:通常情况下,基于横净距计算对应最小圆曲线半径较规范规定值更为严格;大货车占比较高时,基于横净距计算对应最小圆曲线半径较以通行小型车为主的情况更为严格;在进行匝道圆曲线设计时,应在匝道圆曲线半径满足规范规定的情况下,可采用基于横净距计算对应的最小圆曲线半径值。  相似文献   

6.
相对于前面2个版本,JTG D20-2017《公路路线设计规范》对停车视距的障碍物目标点位置的规定发生了变化,但未修订或更新停车视距最小横净距计算公式,实际路线设计、安全评价中仍沿用JTJ 011-1994中的公式进行相关计算,计算误差较大,为保障行车安全,需对相关公式进行修正。文中采用三角形正、余弦定理对横净距计算公式进行推导修正,并用修正公式计算满足小汽车停车视距的最小曲线半径和满足对应运行速度条件下小汽车停车视距的最小曲线半径,以便于设计阶段路线指标把控;同时探讨横净距不足时的处理方法。  相似文献   

7.
针对国内外现有的设计速度限速和运行速度限速法所存在的问题,提出了基于安全行车速度的限速理论.结合安全行车速度包含的内容和道路工程应用特点,具体考虑车速与平竖曲线、停车视距、非线性因素和实际车辆运行速度之间的关系,阐述了安全行车速度限速理论体系的建立,并结合湖南通车山区高速公路典型路段进行限速试验,效果良好.  相似文献   

8.
《公路路线设计规范》(JTGD20-2017)自2018年1月1日开始实施,相对于前几个版本规范,现行规范在条文说明中对停车视距的障碍物目标点位置进行了明确规定,即位于"路面两侧对应的车道边缘线[1]",因而,其位置与前几各版本规范出现了明显的不同,障碍物目标点与车辆行驶轨迹线(视点轨迹线)不在同一轨迹线上。目前,由于现行规范未再修订或更新停车视距最小横净距计算公式,在实际路线设计、安全评价过程中,仍沿用1994年版路线设计规范中的老公式进行相关计算,其计算结果误差较大,很明显,原计算公式已不适用,为保障行车安全,需要对相关公式进行修正。本文采用三角形正、余弦定理对横净距计算公式进行了推导修正,并用修正公式计算了满足规范小汽车停车视距的最小曲线半径,并与老规范计算结果进行了比较分析,同时,以特定项目为例,计算了满足对应运行速度条件下小汽车停车视距的最小曲线半径,以便于设计阶段路线指标把控。另外,并简要提出了横净距不足时的处理方法。  相似文献   

9.
基于图像传感器获得的车辆位置信息,提出一种分析汽车驾驶员驾驶特性的新方法。建立基于模糊机制的驾驶员车道内行驶安全评价模型,以数据库的观点对车辆行驶过程数据进行描述,通过分时间段采样的方式记录行驶车辆距道路标识线的横向距离,根据采样数据特征的统计分析结果确定车道内行车的安全评价模糊隶属度,以此评估驾驶员车道内行车的安全性,分析驾驶员的行车特点。车辆行驶试验表明,该方法能够准确分析驾驶员的行车状态,并评判驾驶员车道内行驶的安全特性。  相似文献   

10.
车行桥梁与隧道的曲线路段受桥梁防撞墙、声屏障、防眩板或隧道侧壁与中隔墙等的影响,容易造成视距不良,带来行车安全隐患。从停车视距组成及其与最小横净距关系入手,分析了平面停车视距的检验方法以及在设计中的应用方法,并以某城市快速路隧道为例,对弯道路段最不利车道的停车视距进行了检验,提出了当平曲线半径低于保证停车视距的最小半径时,确保隧道曲线路段停车视距的设计措施。相关的结论可供类似工程参考和借鉴。  相似文献   

11.
通过对多条高速公路的小客车视距进行检查,发现中分带视距存在很多问题,为了解决在具有中分带的道路上,尤其是靠近中央分隔带护栏的左转曲线路段的停车视距不足的问题;通过阅读大量文献,对影响停车视距模型的各因素和现有停车视距模型存在的问题进行了分析;以车辆在曲线路段运行的行车动力学模型为基础,从影响停车视距模型本身的参数入手,在运行速度、道路纵坡、纵向摩阻系数3个方面对停车视距模型进行修正,并从目标物高度的角度出发,对停车视距不满足要求的路段提出建议,并进行了实例验证。研究结果表明:通过提高目标物高度至0.8 m,可以很好地解决曲线路段的停车视距问题,避免中分带护栏特殊设计或者增加高速公路不必要的占地、影响速度的一致性。  相似文献   

12.
为了厘清弯道路段相关线形参数对停车视距的影响,在对弯道路段车辆行驶动力学分析的基础上,建立以制动初速度、平曲线半径、弯道超高、弯道纵坡及道路附着系数为自变量的弯道路段车辆制动模型;结合驾驶人和车辆的反应时间,根据运动学原理,构建弯道路段车辆安全停车视距修正模型,通过数值分析,提出弯道路段车辆停车视距计算方法,并将弯道路段车辆停车视距计算结果与《公路路线设计规范》规定值进行对比。结果表明,随着弯道纵坡坡度、超高的增大及弯道半径的减小,停车视距逐渐增加;模型计算值普遍大于规范规定值,特别是在高车速时二者的差别较大。  相似文献   

13.
由于规范规定的停车视距所需要的圆曲线最小半径,较规范规定的圆曲线一般最小半径大得多,使规范指标如何执行成为争议的焦点问题。根据高速公路内侧车道小客车停车视距合理取值的研究,认为高速公路内侧车道采用紧急制动停车视距较为合理,但紧急制动停车视距较规范值小,针对采用紧急制动停车视距究竟有没有安全风险或安全风险究竟多大这一问题,从高速公路内侧车道被占概率、停车视距不足时可能碰撞速度与风险,以及换道行为的可能性与换道概率等多角度进行了研究。研究表明:高速公路内侧车道被占可能性仅有3种,但概率都非常小;而且如果内侧车道仅被占半个车道时换道可能性较大,在2级服务水平时换道概率超过65%,最高达79.4%, 3级服务水平时换道概率在50%左右;根据紧急制动停车视距与规范值相比较分析,即使出现碰撞事故,但经计算可能的碰撞速度低于20 km/h,碰撞造成的可能风险与损失较小;根据紧急制动停车视距与汽车刹车试验得到的刹车距离进行比较,刹车距离明显短于紧急制动停车视距,安全富余度较大;根据路面横向力系数验算,圆曲线最小半径远小于规范规定的圆曲线最小半径一般值。本研究认为山区高速公路采用紧急制动停车视距是合理的,安全风险非常小。  相似文献   

14.
以避险车道入口处的竖曲线半径最小值和最小长度值为研究对象,通过分析避险车道的组成、纵断面的类型,从缓和对驾驶员的冲击并保证驾驶员的操作工效、使驾驶员在引道上有足够的时间调整方向准确驶入制动车道、满足夜间失控车辆进入避险车道视距要求3个方面分析研究,最后综合提出了不同入口速度时,避险车道入口处竖曲线最小半径和最小长度设计指标。  相似文献   

15.
结合阿尔及利亚某高速公路隧道路段平面设计经验,研究法国规范体系下隧道路段平曲线最小半径;从平曲线半径、停车视距等规范规定入手,分析得出最小平曲线值计算方法。分析表明:影响隧道路段平曲线最小半径值的因素有视点位置的选择、隧道洞身尺寸、纵坡值等;设计中需结合纵坡值,对左右幅停车视距进行单独验算,以确保行车安全。  相似文献   

16.
基于道路特征信息变化率的公路线形质量评价   总被引:1,自引:2,他引:1  
公路线形质量对行车的舒适性和安全性有着非常重要的影响,如何合理有效地对其进行评价是一个有待解决的问题。从驾驶员行车时接受道路信息的角度出发,提出了道路特征信息变化率的概念,并作为评价公路线形质量的定量指标运用到平面线形、纵断面线形和平纵组合的评价研究中。研究表明:平曲线半径越小,驾驶员接受的道路特性信息变化率越大,驾驶员负担也越重;此外,平曲线长度、竖曲线半径及平纵组合都对道路特性信息变化率有较大的影响。研究成果可为改善公路线形,提高行车安全提供依据。  相似文献   

17.
开展行车视距调查对于营运期公路安全评价至关重要,这对车载条件下行车视距检测提出了要求.针对现有基于车道线图像特征点所构建的视距模型精确度不高的问题,提出了1种以车道线虚线角点为关键特征的行车安全视距测算模型.在车载设备获取的图像预处理基础上,采用轮廓跟踪法对车道线虚线轮廓进行提取,通过设定轮廓尖锐度阈值以实现对车道线虚...  相似文献   

18.
为从视距角度分析多车道匝道上小车超大车引发交通事故的致因,建立基于视距分析的多车道匝道视距评价与优化模型,并将该模型应用于实际立交的多车道匝道评价与优化.分析匝道上小车超车过程中停车视距指标的变化情况,并找出最不利状态进行研究;建立多车道匝道视距评价与优化模型,对该模型中匝道圆曲线半径、圆曲线长度、圆曲线与缓和曲线组合这3个关键要素进行深入研究,并提出满足视距要求的匝道平面线形要素推荐值;结合交通安全设施提出一套综合性的视距优化方案;利用该模型对四川省某高速公路的互通立交进行检验.研究结果表明,该模型可较好地解决多车道匝道视距不足的问题.在设计速度小于40 km/h的匝道,使用"平面线形优化法"效果较好.匝道圆曲线半径需要平均增大18.4%,圆曲线长度与缓和曲线长度均为3s行程长度.在设计速度大于40 km/h的匝道,"交通工程设施优化法"中的限速措施能更好的解决问题,其中设计速度与限速值的差值为15 km/h.   相似文献   

19.
行车视距是影响隧道行车安全的关键因素,它对隧道平曲线最小半径的确定起决定作用。笔者详细分析了影响视距的主要因素,提出了针对视距采取加大平曲线半径和加宽隧道内轮廓两种方案,并进行了技术经济比较。  相似文献   

20.
为解决目前双车道公路安全平面线形安全设计与评价缺乏科学可靠的方法问题,从几何设计标准以及双车道公路平面线形指标与交通安全的关系出发,提出以平曲线半径和曲率变化率作为平面线形安全评价的几何指标,通过运行速度反映几何指标与事故关系。基于双车道公路不同平曲线半径下大量运行速度实测数据,利用统计分析的方法,得到了运行速度分布规律,建立了双车道公路运行车速预测模型。基于运行速度一致性评价标准和跟驰理论,将曲线间直线长度区分为独立直线和非独立直线,对于非独立直线,曲线与曲线的关系是安全评价的控制因素;对于独立直线,直线与曲线的关系是安全评价的控制因素。提出了基于运行速度和直线独立性分析的平面线形安全性评价程序,可用于指导双车道公路安全设计与评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号