首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 828 毫秒
1.
刘昀 《中外公路》2021,41(5):116-119
预应力混凝土箱梁裂缝是影响桥梁结构安全的重大隐患.该文对某三孔预应力混凝土变截面箱梁建立有限元模型,分析竖向预应力损失和箱梁腹板厚度对箱梁桥开裂的影响.结果 表明:连续箱梁边墩支点附近的边跨现浇梁段的主拉应力值较大,且这些位置截面梁高较小,如果施工和运营阶段竖向预应力损失过大,在这些区域容易出现腹板斜裂缝;腹板厚度对斜截面抗剪承载力的影响比截面主拉应力的影响大;箱梁支点附近梁段腹板厚度较薄,容易导致斜截面抗剪承载能力不足.  相似文献   

2.
戴伟  万杰龙  贺欣怡 《上海公路》2023,(4):53-57+112+209
自锚式悬索桥通过主缆与加劲梁锚固结合的方式,形成闭合传力路径。主缆的水平分力通过锚固区,逐渐传递到主跨加劲梁;竖向分力则主要通过边跨自重平衡。现以太原市通达街跨汾河的四跨单塔自锚式悬索桥为背景工程,针对其锚固区梁段宽度大、锚固构造复杂等特点,建立主缆锚固区的板壳实体有限元模型,并计算分析了主缆力作用下,宽箱梁段支座间的荷载分配关系、锚固区局部受力情况、主缆力在锚固区的传递机理等,为今后同类型结构的设计提供依据。  相似文献   

3.
运用现代有限元方法分析了某斜拉桥索梁锚固区局部应力的分布规律及索力的扩散规律。结果表明,索力引起主梁顶板内局部较大的横桥向拉应力,与锚块固结的横隔板和箱梁腹板则传递和承受了大部分的垂直索力分量。  相似文献   

4.
装配式混凝土箱梁在温度作用下产生的结构次内力是造成其开裂的重要因素。为研究装配式混凝土箱梁在梯度温度作用下的温度应力分布,对4种不同国家设计规范梯度温度模式下装配式混凝土箱梁温度场进行分析。通过建立某五跨装配式混凝土箱梁实体单元模型,施加温度荷载,对不同温度场下连续装配式混凝土箱梁的应力与变形进行计算。结果表明,装配式混凝土箱梁在梯度温度作用下产生次内力,各国规范温度模式在混凝土箱梁中产生的温度效应差别较大。纵向应力最大值出现在箱梁顶板下缘梗腋处,不同工况下最大相差71%;横向应力最大值出现在混凝土桥面板内,不同工况下最大相差113.8%;全桥最大主拉应力出现在次边跨,不同工况下最大相差66.7%。故认为在进行设计时应考虑最不利的梯度温度作用对装配式混凝土箱梁的影响,避免拉应力超出限值。  相似文献   

5.
南京江心洲大桥边跨主缆锚固大横梁设计独特,结构受力非常复杂.为了获得锚固横梁局部应力的大小与分布规律,对其传力途径进行研究,以通用有限元程序为计算平台,采用空间索单元模拟横梁中配置的预应力束以及主缆束股,三维块体元模拟混凝土锚固横梁,应用二次开发技术,建立精细三维有限元模型.在此基础上采用合理的加载模式对锚固横梁在空缆阶段和成桥状态2种不同工况进行应力计算与分析.结果表明:在空缆与成桥2种状态下锚目横梁的应力值与分布规律变化较大;为保证锚固横梁在施工过程中的受力状态处在合理的范围之内,锚固横梁中配置的大量预应力束应配合主缆束股的内力变化而分批次张拉.  相似文献   

6.
青岛市墨水河大桥主桥为2×90 m单塔中央双索面斜拉桥。主梁采用分体式箱形截面钢主梁,斜拉索与钢箱梁内边腹板之间通过钢锚箱连接,索梁锚固区的传力途径和受力情况较复杂。利用有限元软件midas FEA对索力最大的索梁锚固区及附近梁段进行板壳单元有限元分析,对索力最大的钢锚箱及局部腹板进行实体单元有限元分析。结果表明,对于中央索面分体式钢箱梁斜拉桥,顶底板等效应力峰值出现在联系横梁跨中;联系横梁腹板所对应的箱室内横隔板比拉索横隔板的应力水平高;通过设置腹板局部补强板,锚固区腹板变形和应力均可满足受力要求;钢锚箱锚固于内边腹板外侧,斜拉索张拉施工和后期养护均较方便。  相似文献   

7.
嘉绍跨江大桥北岸水中区引桥为十三联70 m等跨连续刚构桥,主梁为单箱双室斜腹板箱梁,采用短线法预制拼装施工。为了保证主梁预制与拼装的精度,采用有限元软件分析梁段自重、梁段刚度、预应力张拉控制应力、管道摩擦系数、预应力筋松弛系数、存梁天数、施工荷载及温度等参数对主梁预制线形与单个"T"构最大悬臂状态线形的影响敏感性。结果表明:影响预制线形的主要因素是梁段自重和预应力张拉控制应力;影响单个"T"构最大悬臂状态线形的主要因素是施工临时荷载和梁段自重。  相似文献   

8.
依据无应力状态控制理论,以厦漳跨海大桥南汊主桥施工为背景,研究结合梁斜拉桥标准梁段施工、边跨合龙施工、中跨合龙施工控制方法.施工中斜拉索分两次张拉,桥面板湿接缝滞后1个梁段浇筑;施工过程中以主纵梁安装、浇筑湿接缝和斜拉索第二次张拉3个阶段为重点控制工序.通过采取悬臂端压重、调整合龙口附近的斜拉索索力、对边跨支架区梁段刚性转动和竖向顶升等控制措施,使边跨合龙状态满足顺接合龙的要求.中跨采用长圆孔工具拼接板为辅的自然降温法合龙方法;根据观测结果确定夜间最大温差,计算合龙间距的变化量,进而确定工具拼接板长圆孔的尺寸及合龙梁段的实际长度.  相似文献   

9.
体外预应力桥梁锚固块构造分析及拉压杆模型法配筋研究   总被引:1,自引:0,他引:1  
卢春玲  王强 《公路交通科技》2007,24(11):71-76,80
采用3种有限元分析模型进行体外预应力桥梁锚固块的应力分析,分别考虑角钢、钢垫板、体外预应力钢管,钢筋网和分布钢筋对锚固块的影响,并对3种有限元模型计算结果进行分析对比。另外,对单孔锚固的T梁锚固块直接利用美国ACI-318-05混凝土结构规范中的拉压杆模型进行配筋设计;对多孔锚固的箱梁锚固块,忽略横向应力和竖向应力的相互影响,利用弹性应力法建立箱梁锚固块的横向和竖向配筋的拉压杆模型进行配筋设计。研究结果表明,在体外预应力锚固块与主梁相接部位中设置角钢有效地降低了这一位置由于大吨位张拉力引起的应力集中;设置了钢垫板、角钢、体外预应力钢管以及锚固区钢筋网和分布钢筋后,锚固区是安全的。因此,运用拉压杆模型法对体外预应力锚固块的配筋设计是合理可行的。  相似文献   

10.
《公路》2021,(5)
梁拱组合桥构造相对复杂,施工过程不确定因素对桥梁线形及受力影响较大。通过建立精细化空间杆系有限元模型,研究预应力张拉误差和混凝土荷载等力学参数变化对结构应力及桥梁线形的影响。分析结果表明:当主梁混凝土自重比设计值大时,主梁顶板压应力减小,底板压应力增大,跨中合龙段附近主梁向上挠度减小;在梁拱组合桥成桥阶段,预应力张拉误差对主梁跨中挠度影响较为突出,梁拱组合桥在最大悬臂阶段预应力误差对桥墩附近主梁的挠度影响相对较小,越靠近悬臂端预应力误差对主梁的挠度影响越大。研究成果可为梁拱组合桥的设计及施工过程提供技术参考。  相似文献   

11.
椒江特大桥主桥为主跨480m的四线铁路连续钢桁梁斜拉桥,采用H形混凝土塔,索塔锚固采用环向预应力锚固。为确定索塔锚固区环向预应力的合理布置方式,采用MIDAS FEA建立桥塔实体模型,对U形束、井字形直束2种布束方式进行比选,在此基础上,分析施工、运营及断索工况下锚固区的受力性能,并进行预应力合理张拉顺序研究。结果表明:环向预应力采用U形束布置是经济、合理的;锚固区混凝土在预应力切向基本处于受压状态,在预应力法线方向出现1 MPa以内的拉应力,斜拉索张拉会增加侧壁内侧、外索孔处水平拉应力,运营期寒潮效应使塔壁外侧产生较大拉应力,断索时前、后壁齿块横桥向拉应力增加;上塔柱应设置外表面钢筋网片并加强竖向、环向配筋;环向预应力施工时,宜同时张拉内、外侧预应力。  相似文献   

12.
谢尚英  王锋君 《世界桥梁》2007,(1):32-34,67
结合某混凝土自锚式悬索桥工程,分析了该桥锚固区部位混凝土应力的分布特点及变化规律。根据计算结果,确定了主梁的合理施工方案,避免了混凝土主梁产生过大的拉应力,其计算结果及设计思路对同类工程有一定的参考价值。  相似文献   

13.
斜拉桥塔索锚固区空间应力分析   总被引:2,自引:2,他引:2  
结合恩施市施州大桥的设计,运用大型通用分析软件ANSYS,采用空间有限元的方法,分2种工况,对其空心预应力混凝土桥塔塔索锚固区进行了空间应力分析,并且比较了传统U形布束方式和井字方式的优缺点。分析结果表明:通过合理布置预应力粗钢筋,可以抵抗斜拉索水平力产生的不利影响,满足结构的使用要求;斜索锚固区段采用箱形截面的桥塔,索力的水平分量在没有斜索锚固的箱体部分内引起较大的顺桥向拉应力,在斜索直接锚固的箱体部分,引起靠外壁部分、横桥向较大的拉应力;顺桥向预应力筋应布置在没有斜索锚固的箱体内,横桥向预应力筋则重点布置在斜索直接锚固的箱体靠外侧部分;塔索锚固区的受力以正应力为主,只要控制塔索锚固区正应力分布,塔索锚固区的受力就可得到有效控制。  相似文献   

14.
季云峰  倪迪 《城市道桥与防洪》2020,(11):107-109, 142
以某大跨径斜拉桥为研究背景,基于钢箱梁的定期检测结果,研究了该斜拉桥的钢结构疲劳性能。在疲劳开裂较严重的顶板与U肋焊接细节、关键受力部位的底板与U肋焊接细节、索梁锚固区焊接细节布置传感器,测试各主要焊接细节的疲劳应力历程,基于雨流计数法获得疲劳应力谱。分析结果表明:苏通大桥目前的交通流量远大于2010年前的交通流量;钢箱梁底板与U肋焊接细节、索梁锚固区锚固板与外腹板焊接细节的疲劳寿命评估结果大于设计使用年限;若不计焊接初始缺陷与焊接残余应力,顶板与U肋焊接细节不会过早地发生疲劳破坏。  相似文献   

15.
为了明确不同结合方式对预应力组合梁桥受力性能的影响,以一主跨70 m的预应力组合梁为例,选取先结合组合梁和后结合组合梁两种结构形式作为对比分析对象,采用空间有限元模型详细模拟了组合梁的施工过程,计算两种不同结合方式的组合梁的受力性能。计算结果表明:采用常规的先结合组合梁在混凝土桥面板张拉预应力后,部分预应力通过连接件传递给钢梁,而后结合组合梁的混凝土桥面板获得全部的预应力。后结合组合梁与先结合组合梁相比,在中支点截面混凝土顶面预压应力前者比后者大2.84 MPa、钢梁顶板的压应力前者比后者减少46.74 MPa、钢梁底板的拉应力前者比后者减少4.84 MPa。后结合预应力桥面板比先结合获得更多的预压应力储备,预压应力提升比例为30%,提高了桥面板在正常使用过程的抗裂性能。  相似文献   

16.
对在环向预应力单独作用、承载能力索力单独作用、承载能力极限状态和正常使用极限状态下的梅溪河大桥索塔锚固区上部三节段的有限元模型进行了计算与分析。结果表明,实桥模型齿块、预应力筋孔道及角隅等位置存在应力集中;实桥模型在环向预应力单独作用下与索力单独作用下位移方向相反;模型正常使用极限状态均为全截面偏心受压;齿块作为锚固和传力构件,对缓和斜拉索锚固的应力集中程度作用明显。这些结论对于斜拉桥索塔锚固区的设计和施工具有一定的指导意义。  相似文献   

17.
采用无支架方式施工系杆拱桥时,施工期间的水平推力依靠施加于拱脚间的临时拉索进行平衡,随着施工过程的进行,水平推力不断发生变化,相应需要不停地调整临时索的索力。依托泰东河大桥作为背景工程,详细介绍了无支架施工临时索设计方法,并建立空间实体分析模型,研究了锚固区的受力特性,结果表明:临时索的施加对锚固横梁受力影响显著,横梁呈现明显的横向弯曲效应,为此提出钢束横向不均匀张拉的施工优化措施;锚固块主拉应力较大值主要出现在临时索锚下区及与系梁交界位置,应布置加强钢筋防止施工过程中开裂,锚固块整体主拉应力较小,满足受力要求。  相似文献   

18.
浙江秀山大桥主桥为主跨926 m的双塔三跨连续钢箱梁悬索桥,全桥加劲梁共分89个安装节段,标准节段吊装重量212.6 t,最大吊装重量247.1 t。桥址处地理环境复杂、海洋环境恶劣,钢箱梁安装难度大。根据现场实际情况,钢箱梁中跨由跨中向桥塔方向对称吊装,两岸边跨由锚碇向桥塔方向对称吊装,先合龙中跨再合龙边跨。施工过程中,运梁船采用自航驳船动力定位+辅助钢丝绳定位;中跨和秀山岸边跨的一般梁段采用船舶运输+缆载吊机安装;官山岸边跨梁段采用移梁轨道存梁,然后采用液压同步提升系统安装;秀山岸边跨锚碇无索区梁段采用浮吊+轨道牵引纵移到位;桥塔无索区梁段采用缆载吊机+液压同步提升系统起吊荡移方式安装;边跨侧合龙段安装时,需对合龙口两侧梁段进行纵向牵引。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号