首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
董伟良  诸裕良  姚文伟  邵杰 《公路》2021,(3):105-110
为准确计算跨海大桥桥墩所受的波浪荷载,研究高桩承台复合桥墩各结构间相互波浪绕射影响,采用FLUENT软件平台建立三维数值波浪水槽,分别针对波浪单独作用于桩基、承台、墩身和作用于复合桥墩等4种工况,模拟分析了各结构波浪力随水位和周期的变化规律,以及各结构间的波浪绕射影响。研究结果表明:当CS>0时,桩基水平波浪力随着水位增加而减小,受承台波浪绕射影响,桩基水平波浪力会增大,且随着水位增加,承台波浪绕射影响越明显;承台水平波浪力随水位先增后减,受桩基和墩身波浪绕射影响,水平波浪力也增大,承台水平波浪力最大增幅约25%;承台垂向波浪力随水位增加呈И形分布,且在不同水位条件下,随周期变化规律不同;墩身受承台波浪绕射影响明显,墩身水平波浪力最大增幅约250%。  相似文献   

2.
为研究组合基础中各构件波浪力的变化规律,以某深水桥梁采用的双承台组合基础为原型,采用特征函数展开匹配法计算承台波浪力,结合Morison公式计算桩柱波浪力,分析承台尺寸、浸深和桩柱位置等参数的变化对基础波浪力的影响。结果表明:下承台半径对上承台波浪力(力矩)影响较大,其高度的影响与上、下承台半径比有关;上承台尺寸主要影响下承台水平波浪力和波浪力矩;随上承台浸深的增加,下承台波浪力(力矩)曲线出现多个极值;中部桩柱波浪力随上承台浸深增加呈先增后减趋势;边部桩柱波浪力随桩心角的增大呈先增后减趋势、随桩心距的增大而增加,承台的存在引起波浪力偏向和相位差。  相似文献   

3.
目前桥梁基础的波浪力计算大多采用数值模拟的方式进行研究,但数值模拟存在计算成本高、耗时长等缺点。因此基于线性势流理论首次推导了承台-群桩结构的波浪绕射作用计算公式,求解得到了承台波浪力的半解析解。首先将承台-群桩结构简化为上层穿出水面、下层嵌入水底的双层多柱体结构,其中上层单柱体代表承台,下层多柱体代表群桩。然后将计算域划分为承台外侧和下侧2个子域,子域间的交界面函数通过傅里叶级数处理,通过匹配特征函数展开法对每一个子域的速度势函数进行求解,最终得到承台表面波浪力。在进行解的收敛性分析和与边界元软件进行大量的对比验证后,分析了桩半径和承台高度对承台表面波浪力的影响。研究发现:在小波数范围内,承台表面的量纲一的波浪力会随着群桩的存在而增大,并随着桩半径的增加而进一步增大;同时承台高度的增加会首先对波浪力的增加有促进作用,但在承台高度达到某一临界值后,承台量纲一的波浪力将会减小。首次基于势流理论推导的双层多柱体波浪作用的理论公式,为承台-群桩结构表面波浪力的求解提出了一种新的半解析方法,相较于数值模拟,其能在保证结果准确性的同时,也能使得计算更加方便快捷、成本低廉,为之后波浪作用理论的进一步完善提供有力支撑。  相似文献   

4.
为研究跨海桥梁承台波流力计算方法与合成系数取值的适用性,给跨海桥梁承台波流力计算提供指导,基于承台波浪力和水流力计算理论,以平潭海峡公铁大桥SR54号桥墩为研究对象,通过物理模型试验,得到承台波流力与波浪力、水流力之和的比值(合成系数)。试验结果表明:对于桥梁基础承台波流力最大值可简化地取波浪力最大值与水流力最大值之和的1.04(合成系数)倍,在计算时可忽略桥墩和桩基的影响。将该方法应用于港珠澳大桥、平潭海峡公铁大桥以及某输变电工程电塔基础承台结构波流力计算,结果表明采用该方法的波流力计算值与模型试验值符合较好,具有较高的精度,可推广应用于同类跨海桥梁承台波流力计算。  相似文献   

5.
在桥梁基础波浪力计算中,波浪对桥梁基础产生的水平力为主要设计荷载,其很大程度上控制桥梁基础的规模。为了给桥梁基础设计提供依据,确保桥梁结构受力安全、经济合理,选取乐清湾大桥1号桥基础为研究对象,采用大直径结构波浪力计算数学模型,对作用于承台和群桩上的波流力分别进行计算,并对承台波流力进行合成系数分析,提出承台波流力可近似通过波浪力与水流力之和乘以1.04来计算。利用波浪物理模型试验对该计算方法进行研究和论证,建立适用于实际工程的有效数值模型,为工程的安全设计提供重要保证。  相似文献   

6.
陈上有  刘高  刘天成 《公路》2020,(3):80-86
基于波浪场中动水压强的空间分布特征,提出了消减跨海桥梁沉箱基础波浪荷载的方法:一是优化基础横截面外形,调节基础横截面外轮廓不同位置波浪压力的相位差,减小基础所受到波浪力和力矩;二是优化基础竖截面外形,减小水面附近波浪能量集中区域的截面尺寸,增大靠近海床面区域的截面尺寸,将基础下部的迎浪面设置为外伸斜面,利用斜面上波浪压力竖向分力产生的力矩抵消部分水平分力产生的力矩,从而消减桥梁基础上的总波浪力矩。对于大尺度矩形和圆端矩形截面的桥梁深水沉箱基础,基于势流绕射理论和边界积分方法进行分析,结果表明,相比于矩形截面,采用圆端矩形截面可有效减小基础的波浪力和力矩;相比于上下等截面的基础,采用下部迎浪面设置外伸斜面的基础可以大幅减小基础的波浪力矩。研究成果可为跨海桥梁深水基础设计提供参考。  相似文献   

7.
为研究承台淹没深度对海洋桥梁桩-承台复合基础波浪荷载的影响,指导复合基础设计,通过求解RANS方程和k-ε湍流模型,借助CFD软件建立波浪与复合基础相互作用的三维数值模型,计算不同承台淹没深度时复合基础周围流场特征以及波浪荷载随时间的变化规律。结果表明:受基础阻水作用影响,复合基础周围流场紊乱,且周围流向发生改变;当承台底面位于波峰位置以上时,承台位置变化对复合基础波浪荷载没有影响;当承台位于波谷与波峰之间位置时,随承台淹没深度增加,复合基础波浪荷载先增大后减小;当承台顶面位于波谷位置以下时,随承台淹没深度增加,复合基础波浪荷载逐渐减小,且淹没深度越大,减小幅度越不明显。实际工程设计时,综合考虑各方面的影响,为避免复合基础所受波浪荷载过大,应尽量避免将承台设计在水面附近。  相似文献   

8.
为了能够准确、高效地计算深水桥梁的墩-水耦合作用,以墩高及入水深度均为60m的圆形实心墩为研究对象,在对目前常用的3种动水压力计算方法(Morison公式、辐射波浪法和流体声单元法)进行理论研究、对流体声单元法流体域边界条件进行改进的基础上,建立了相应的墩-水耦合计算模型,对常用深水桥墩动力特性和动力响应进行对比分析,得到3种方法在计算效率、计算精度方面的差异及适用范围。结果表明:辐射波浪法、Morison公式计算效率高于流体声单元法;辐射波浪法计算精度高于Morison公式、流体声单元法;流体声单元法适用范围比Morison公式、辐射波浪法广。  相似文献   

9.
为准确计算跨海桥梁施工围堰的波浪荷载,提出一种基于现场实测水压力的围堰波浪力计算方法。以平潭海峡公铁两用大桥B39号墩施工围堰为背景,现场实测围堰主迎浪面的水压力,根据实测水压力数据计算围堰主迎浪面上的波浪动力荷载,并采用AQWA软件建立围堰的三维数值模型,基于三维线性绕射理论计算围堰上的波浪动力荷载,与根据实测水压力计算得到的波浪动力荷载进行对比。结果表明:围堰的波流荷载随时间变化呈周期性变化,波浪动力荷载在0附近上下波动;根据实测水压力计算的波浪荷载和数值模拟的波浪荷载随时间变化趋势基本吻合,提出的波浪荷载计算方法能较准确地计算围堰受到的波浪动力荷载峰值。  相似文献   

10.
为尽量准确地估算跨海桥梁哑铃形围堰的波浪力,开展波浪水槽试验。以某跨海大桥哑铃形围堰为原型,制作1∶60围堰模型,采用波浪水槽试验系统制造规则线性波,研究波浪周期、波高和波浪入射角对围堰波浪力的影响规律,并根据试验结果提出考虑结构尺度效应的哑铃形围堰最大波浪力简化计算方法。结果表明:随着波浪周期的增加,哑铃形围堰的纵向、横向波浪力呈先增加后减小的趋势,竖向波浪力呈增加趋势,长波条件下需重视竖向波浪力的作用;随着波高的增加,围堰各方向波浪力基本线性增加;随着波浪入射角的增加,纵向波浪力明显增加,横向波浪力呈先增加后减小的规律,入射角45°时波浪力最大;提出的波浪力简化计算方法能较准确地估算哑铃形围堰的最大波浪力。  相似文献   

11.
针对波浪对深水桥墩的作用,不同截面形式的深水桥墩受到同一种波浪参数的波浪力的影响大小各不相同,这就需要对深水桥墩在设计和施工阶段采取有效的应对方法。该文以CFD数值计算的方法为基础,对圆形和方形截面形式的深水桥墩在相同三维波浪参数作用下分别进行了计算,并得到了各自波浪力的大小,数值计算结果表明:圆形墩柱受到的波浪力要小于边长为圆形直径的方形墩柱的波浪力,并且在墩柱自由水面向墩柱底部垂直深度方向的分布上,波浪力逐步减小,在到达某一深度上波浪力减小为0,并在此深度之下保持不变。  相似文献   

12.
针对软土地区铁路桥大直径超长群桩基础,以甬江铁路桥为背景,采用有限元数值分析(三维实体模型)、撑杆-系杆体系、梁式体系3种计算方法对超大桩头力、不等长桩的铁路桥梁大型厚承台进行计算。结果表明,不等长桩的大型厚承台在强大荷载作用下,基础位移及基础变位所致塔顶位移均不显著,而承台底面主拉应力较大,需作配筋设计和验算。  相似文献   

13.
李国亮  刘钊  李学民  伍军 《公路交通科技》2007,24(1):100-103,108
在充分了解当地水文气候条件、综合比选各种理论与实用方法、参考已有工程经验的基础上,确定了杭州湾跨海大桥南岸超长施工栈桥设计所采用的风、浪、流荷载的计算方法。研究的主要结论:(1)为了实现安全与经济的统一,允许结构在5年、10年和20年重现期所对应的风、浪、流荷载下出现不同程度的塑性;(2)《铁规》、《港规》、《桥规》的风荷载公式的计算结果依次增大,《桥规》更适合栈桥设计;(3)与高精度方法相比,采用Airy波浪运动理论在杭州湾地区计算所得的加速度误差在5%以内;(4)对于小直径桩的波浪力,可以采用半理论半经验公式———Morrison来计算,这一公式最大的优点在于资料丰富、应用广泛;(5)与《铁规》、《桥规》相比,《港规》的潮流力计算公式更贴合海洋环境。  相似文献   

14.
当桥梁低桩承台埋入土体中3~5 m甚至更深且承台底面混凝土与土基密合时,摩擦桩承台基底土提供了相当可观的竖向抗力,为研究该承台基底竖向抗力,文中采用弹性理论m法,推导计算低桩承台基底竖向抗力作用效应的公式,并对现行《公路桥涵地基与基础设计规范》中的相关公式提出修正建议。结果表明,按文中公式计算的摩擦桩桩顶外力较不考虑承台基底竖向抗力作用时的桩顶外力有明显减小,从而可有效减短桩长,节省材料用量。  相似文献   

15.
以宁波市三官堂大桥主桥哑铃型低桩承台基础为工程背景,采用有限元模型研究了大型哑铃型承台的静动力特性,并与平面m法的计算结果对比,同时采用反应谱方法重点讨论了横系梁在地震作用下的传力规律。结果表明:平面m法计算桩顶轴力比较精确,且与有限元计算结果接近,但是用来计算桩顶弯矩和剪力时则误差较大;设置系梁后,系梁刚度会对哑铃型低桩承台基础的地震反应产生较大影响,随着系梁刚度的逐渐加大,系梁从小刚度时以传递轴力为主到大刚度时以传递弯矩为主变化。  相似文献   

16.
西堠门公铁两用大桥主桥5号桥塔采用高桩承台深水基础,承台为六边形截面,长68 m、宽46.4 m、高10 m,桩长88 m。为了解该跨海桥梁高桩承台深水基础在海洋环境下的波流荷载特性,对高桩承台基础在不同波流条件下所受波流力展开研究。采用CFD软件Flow 3D建立三维波流数值水槽模型,实现波流耦合数值仿真,在通过缩尺模型水槽试验验证可靠的基础上,采用数值仿真计算高桩承台基础不同构件在波流同向、反向及纯波时,不同流速条件下所受波流力,并分析群桩波流力的非均匀特性,提出群桩波流力非均匀性系数γ和桩基系数K以表征群桩波流力特性。结果表明:高桩承台基础在纯波及波流同向时横桥向波流力变化不大,在波流反向时横桥向波流力显著增加,其最大值为纯波条件下最大值的1.13倍;承台所受横桥向波流力在波流同向时随流速增大而减小,在波流反向时一定流速范围内随流速增大而增大;群桩主要受水流力作用,所受作用力随流速增大而增大;群桩波流力非均匀性系数γ最大可达75.9%。  相似文献   

17.
张新来 《公路》2012,(5):202-205
利用流固耦合软件MpCCI将ABAQUS与FLUENT软件连接,对深水环境下波流场与双柱式桥梁墩柱结构变形进行流固耦合问题的数值模拟.结果表明,基于Morison方程,改变圆截面双柱结构的截面尺寸与长度尺寸,结构整体所受波浪力的拖曳力系数将发生变化,研究结果为流固耦合技术在深水桥梁上的应用奠定了一定的基础.  相似文献   

18.
以跨海航道桥梁安全为背景,进行独柱墩及独柱墩-固定式防船撞装置结构波浪力研究。开展室内缩尺试验,验证并校准Fluent三维数值模型的准确性和有效性。利用最小二乘法分解墩柱水动力为Morison方程的形式,计算得到结构水动力系数。考虑波浪高度、波浪周期、防撞装置断面形状和大小等影响因素,计算并拟合出墩柱水动力系数与相关因素间的定量关系。研究结果表明:固定式防船撞装置的存在增大了墩柱表面所受波压强,但不改变其总体分布趋势。当防撞装置断面为矩形,且波浪高度较大时,装置对墩柱受力特性的影响最明显。墩柱结构所受水动力中惯性力占主导,且可用均匀分布的惯性力系数来代替实际分布,独柱墩-固定式防船撞装置结构上的惯性力系数可以达到2.1左右。  相似文献   

19.
为研究斜向波流作用下承台结构受力特点,建立三维波流与结构物相互作用的数学模型,计算分析斜向波流入射角度θ(即波流入射方向与横桥向夹角)对大尺度矩形承台波流力的影响。分析结果表明:入射角度θ对承台顺桥向波流力的影响系数与sinθ成正比,对横桥向波流力的影响系数与cosθ二次相关,对总波流力影响系数与sinθ二次相关,该影响规律可用于承台斜向波流力的快速估算。与纯波情况相比,波流共同作用增大了流体质点的惯性力,使得承台波流力均明显大于纯波力,入射角θ对纯波力或波流力的影响规律极为接近,设计时可按一致考虑。为避免低估或高估承台波流力,设计时应考虑实际波流入射角度的影响。  相似文献   

20.
基于碰撞数值模拟的桥梁等效静力船撞力-修正系数   总被引:1,自引:0,他引:1  
针对基于碰撞数值模拟的桥梁设计船撞力的基本公式,提出根据桥墩几何因素修正设计船撞力的设想。采用碰撞数值模拟技术对船撞承台进行详细计算,深入研究等效静力船撞力与承台几何形状的关系,得出等效船撞力的桥墩几何修正系数计算公式,并对桥梁设计船撞力的基本公式进行修正。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号