首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
车辆动力学稳定性控制涉及底盘多个执行机构及电子控制单元,所组成控制网络的性能是整个控制系统的关键之一。文中根据SAEJ1939应用层规范,设计车辆动力学稳定性控制网络,并定义其应用层私有通信协议;采用专门的车载网络测试工具,搭建车辆动力学稳定性控制网络测试平台。测试结果显示,所定义的应用层私有通信协议满足系统可靠性的要求,整个车辆动力学稳定性控制网络运行良好。  相似文献   

2.
车辆动力学稳定性控制的仿真研究   总被引:11,自引:0,他引:11  
对车辆动力学稳定性控制的控制原理,控制策略,控制逻辑和算法进行了理论分析。在此基础上,对车辆动力学稳定性控制进行了仿真分析,结果表明,车辆动力学稳定性控制能够改善车辆在高速下或在滑路上转向时的操纵性和稳定性。  相似文献   

3.
以直接横摆转矩控制为例,通过仿真初步分析了四轮独立电驱动车辆分布式控制系统中车载通信网络的非理想状况(延时、丢包等)对车辆动力学控制的影响。仿真结果表明,通信延时等非理想网络状态会对车辆动力学的控制效果和稳定性产生显著影响,而基于网络预测的直接横摆转矩控制算法,可有效补偿通信延时和丢包等的不利影响,获得较好的控制效果。  相似文献   

4.
肖闯  黄江  易高 《专用汽车》2007,(6):36-38
阐述了车辆在地面附着极限下造成转向失稳的原因,对四个车轮施加差动制动时车辆行驶姿态的变化进行了分析。针对车辆的实际工作特点,应用CARSIM软件的车辆动力学模型(S函数),并定义S函数的输入输出接口,在MATLAB/SIMULINK环境中对车辆动力学模型进行了稳定性控制仿真。仿真分析结果表明,差动制动能够改善在高速度或滑路上转向的操纵性和稳定性。  相似文献   

5.
针对独立驱动电动汽车在高附着系数路面高速急转时易发生侧翻事故,在低附着系数路面急转易发生侧滑失稳事故,且单一控制器在不同附着系数路面适应性较差等问题,根据独立驱动电动汽车特点设计了基于分层式结构的稳定性集成控制器。建立了整车动力学模型,并进行了车辆状态参数估计;设计了稳定性集成控制器的控制策略,对车辆的侧倾、横向稳定性状态判定条件和协调策略的制定进行了研究,分别设计了侧倾稳定性控制器和横向稳定性控制器;设置了路面附着系数0.9到0.2的对接路面仿真工况,并在此工况下对所设计的控制器的控制性能进行了仿真测试。结果表明,所设计的稳定性集成控制器相比于单一控制器具有更好的适应性,可有效降低车辆高速行驶过程中的横向载荷转移系数、质心侧偏角等状态量,提高车辆行驶的稳定性和安全性。  相似文献   

6.
首先介绍了目前车辆动力学稳定性控制的研究现状.提出了基于联合仿真平台进行控制仿真研究的新思路;其次详细分析了车辆动力学稳定性控制的原理。应用直接横摆力矩状态反馈控制策略,基于ADAMS/Car和Matlab/simulink的联合仿真技术.采用阶跃转向和单移线仿真工况有效验证了该控制策略的正确性,提高车辆在危险工况下的稳定性和可控性,为实际设计车辆动力学稳定性控制系统提供了理论基础。  相似文献   

7.
针对车辆队列被外部车辆换道超车的场景,外部车辆与队列中的车辆存在异质性,不同车辆适用的间距策略也存在差异性。此外,不同的车辆队列间距策略在道路适应性、车辆队列系统稳定性和串稳定性等方面均存在优势和缺陷。基于此提出一种基于组合间距策略的智能网联车辆队列控制方法,以优化队列车辆的间距。现有的协同/分布式队列控制方法大多基于精确的车辆动力学模型,这要求获得完整的车辆动力学先验知识,并进行非线性-线性模型的转换。然而,在实践中获取精确的先验知识信息往往具有挑战性,且在车辆间进行信息交互的过程中,不可避免地会产生通信时延。因此,在考虑网络环境通信时延的基础上,提出了一种基于自适应积分滑模车辆队列控制器的分布式后向控制方案,该方案可以在线识别和估计未知参数,从而解决三阶车辆节点动力学模型中参数不确定性影响系统稳定性的问题。在设计的积分滑模面中,采用饱和函数替代传统滑模面的符号函数,进一步解决了控制结果中容易出现抖振的问题。然后,利用Lyapunov-Krasovskii定理和无穷范数进行了组合间距策略和间距策略切换下车辆队列系统的内部稳定性和串稳定性分析。最后,通过与现有控制算法进行仿真比较分析,...  相似文献   

8.
Bosch VDC系统的控制原理及展望   总被引:2,自引:0,他引:2  
VDC系统(Vehicle Dynamics Control、车辆动力学控制系统,在美日等国称为VDC,而在欧洲称为ESP,Electronic Stability Program,即电子稳定程序)是Bosch公司1995年推出的用于改善车辆操纵稳定性的一种车辆动力学控制系统。VDC系统包括两个控制回路:控制车辆运动的主控制回路,控制制动和驱动滑移的副控制回路。文中详细介绍了这两个回路的工作原理,并给出了改善车辆操纵稳定性的实例。最后,指出了VDC系统的发展趋势。  相似文献   

9.
主动前轮转向控制技术研究现状与展望   总被引:4,自引:0,他引:4  
主动前轮转向系统提供的独立于驾驶员的转向干预可以提高车辆的操纵稳定性.文中介绍了横摆角速度反馈和横摆角速度与侧偏角联合反馈的稳定性控制算法;阐述了主动前轮转向系统分别与几种动力学控制系统实行集成控制的方法.最后在结论中指出底盘一体化控制将是主动转向技术未来的发展方向.  相似文献   

10.
为了提高四轮独立驱动智能电动汽车在变曲率弯道下的轨迹跟踪精度和横摆稳定性,提出了一种模型预测控制与直接横摆力矩控制协同的综合控制方法。建立了横纵向耦合的车辆动力学模型,采用2阶龙格库塔离散法保证了离散模型的精度,并基于简化的2自由度动力学模型推导了车辆横摆稳定性约束,设计了非线性模型预测控制器;利用直接横摆力矩控制能够改变车辆横摆角速度和航向角的特点,考虑模型预测控制器的预测状态、控制量以及跟踪误差,设计了协同控制规则。仿真结果表明,协同控制方法解决了考虑横摆稳定性约束的模型预测控制器中存在的稳定性约束与控制精度相矛盾的问题,并补偿了模型预测控制器没有可行解时对横摆稳定性的约束,同时提高了智能汽车的轨迹跟踪精度和横摆稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号