首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
琅岐闽江大桥主桥为(60+90+150+680+150+90+60) m 七跨连续半飘浮体系双塔双索面斜拉桥,主梁为栓焊结构钢箱梁,采用悬臂拼装法施工,中跨合龙段长12 m ,合龙段自重约170 t 。为了使大桥能够高精度顺利安全合龙,且成桥后结构内力、线形状态达到预期目标状态,基于无应力状态法原理的控制思想,确定中跨采用双边吊梁、无劲性骨架锁定、顶推法进行合龙。采用 MIDAS Civil 2011对合龙关键工序进行详细计算分析,得到合龙顶推力、顶推位移限值等关键控制参数;分析了顶推过程中的索力、线形变化规律,以验证结构合龙安全可靠;分析得到合龙段无应力长度较小的改变对成桥目标状态影响较小。工程实践表明采用该方法进行合龙控制是可行的,桥梁合龙后内力状态与设计目标一致。  相似文献   

2.
以某主跨为420m的双塔混凝土斜拉桥为工程背景,分析了长度为5.5m的边跨合龙段主梁标高、应力和斜拉索索力等关键控制内容,结合现场实测数据论证了大跨度合龙施工与控制方案的可行性。得出以下结论:斜拉桥大跨度合龙阶段需要大量水箱配重,使得悬臂柔性结构在结构体系转换过程中发生较大位移,施工中主梁位置标高预抬与位移控制尤为重要;在边跨结构体系转换完成之前尾索索力呈逐步升高趋势,在结构体系转换完成之后尾索索力逐步降低;边跨合龙阶段的主梁应力控制关键位置为悬臂3/4位置的下缘。  相似文献   

3.
苏通长江公路大桥为主跨1088m钢箱梁斜拉桥,上部结构采用构件几何控制法进行施工控制,要求不改变构件尺寸和无应力线形.中跨合龙前,主梁悬臂长达540.8 m,结构状态受外界因素影响显著,中跨合龙难度极大.该文通过综合国外顶推合龙工艺和国内温度配切合龙工艺优点,提出了全新的顶推辅助合龙工艺应用于实际施工中.并介绍了顶推辅助合龙工艺实施条件、关键施工参数和主要工艺措施的计算分析要点以及实施情况.  相似文献   

4.
嘉绍大桥主航道桥为(70+200+5×428+200+70)m六塔七跨分幅式钢箱梁斜拉桥。为确保其顺利合龙,结合该桥六塔独柱(桥塔为弱柱结构)并设置竖向双排支座体系和跨中刚性铰等结构特点,按照结构运营状态达到设计理想状态为施工控制目标,采用有限元软件建立实体模型,对关键控制工况分别进行仿真分析,对其合龙工艺、合龙顺序进行研究。研究确定该桥按照无应力状态几何控制法进行顶推合龙施工的方案,7个合龙口按照边跨→中跨→次边跨→次中跨的合龙顺序进行逐次合龙,并对合龙过程中的顶推施工工艺、关键施工参数确定、主要控制手段及实施控制要点进行了阐述。实践证明,该合龙方案和合龙顺序高效、高精度地完成了该桥的顶推合龙施工。  相似文献   

5.
超长联大跨连续梁桥合龙顺序分析   总被引:4,自引:0,他引:4  
超长联大跨连续梁桥体系及受力状况比较复杂,合理的合龙顺序对桥梁的施工控制非常重要.为得到该类桥梁合理的合龙顺序,以内蒙古某一联13跨100 m连续梁桥工程为背景,采用有限元法计算3种不同合龙顺序方案下主梁的上下缘应力、主梁的竖向位移及支座纵向位移,以此为主要控制目标确定该桥合理的合龙方案为部分奇数跨合龙→相邻T构小合龙...  相似文献   

6.
广佛江快速通道江顺大桥主桥为双塔双索面的钢-混混合梁斜拉桥,主跨700m,双向六车道,箱梁全宽39m,是目前广东省第一大跨斜拉桥,该桥采用无应力状态控制法进行施工监控,边跨合龙施工存在难度,综合考虑合龙环境温度变化、钢箱梁顶底板温差及现场实际情况等因素,边跨采用配切合龙法施工。以该桥主桥钢箱梁顺岸边跨合龙为例,对边跨合龙的控制思路和合龙方案进行论述,重点介绍边跨合龙的施工步骤和细节。  相似文献   

7.
凌华才 《公路》2012,(2):113-115
结合北江大桥60 m+100 m+100 m+60 m悬臂拼装连续刚构箱梁施工过程控制的实践,介绍了预制拼装主梁安装线形计算方法,确保了该桥的顺利合龙及施工安全,可为类似桥梁的施工过程线形控制提供参考.  相似文献   

8.
上坡米1号大桥跨径布置为(6×40 m)T梁+(72+120+120+72)m预应力混凝土连续刚构+(3×40 m)T梁,连续刚构主桥两个过渡墩分别为69.91、58.37 m,原设计边跨现浇段和合龙段长分别为11 m和2m,施工采用吊架承重结构体系。由于施工过程中跨配重吨位大,施工控制比较难,一旦在某个施工环节出现疏忽,产生的轻则是不可逆转的质量问题,重则是质量安全事故。为此,工程师们围绕缩短边跨现浇段长度来优化边跨合龙与现浇段设计施工方案,并成功研究出先合龙中跨、挂篮不对称悬浇18号梁段3.5 m+墩顶托架现浇段5.5 m+挂篮施工合龙段4 m的边跨合龙与现浇段设计施工方案。  相似文献   

9.
以某桥主跨531m钢桁拱桥主拱圈扣挂法合龙控制为研究对象,介绍该特大钢桁拱桥主拱圈合龙方案,分析影响无应力合龙目标的相关因素,建立拱肋架设有限元分析模型,进行无应力状态下的无应力索长求解和无应力构形确定,实现无应力合龙的目标。  相似文献   

10.
安庆长江铁路大桥主桥为主跨580m的双塔三索面连续钢桁梁斜拉桥,主桁采用空间三片桁架结构,桁高15.0m,节间长14.5m,主桁间距14.0m。主桥共设中跨、边跨2个合龙点,先合龙中跨,再合龙边跨。根据边跨合龙前的钢梁安装架设状态,对主桥边跨合龙特点进行详细分析,制定了各项合龙措施,通过合龙措施的敏感性分析,确定边跨合龙方案为起顶5号墩支座,回落7号墩支座。按照此合龙方案调整合龙口状态,使里程偏差≤2cm,轴线偏差≤1cm,竖向高程偏差≤3cm,顺利实现了边跨无应力合龙。  相似文献   

11.
陶路 《交通科技》2015,(2):48-51
合龙为桥梁由静定转换为超静定的关键工序,其措施、参数的确定对施工过程及后期运营结构安全有着较大影响。文中以82.5m+90m+220m+82.5m的北盘江大桥合龙为对象,对超大跨径桥梁多次体系转换的合龙技术进行了研究,结合桥梁后期收缩、徐变引起的墩身水平位移计算成果,以各墩弯矩平衡为原则,确定了顶推力、顶推量、合龙温度等参数,制定了合龙段配重、顶推、锁定、浇筑等合龙工序,保证了施工过程及成桥状态下的结构安全。  相似文献   

12.
南京大胜关长江大桥主桥钢梁南边跨合龙技术   总被引:5,自引:3,他引:2  
京沪高速铁路南京大胜关长江大桥主桥为2联(84+84) m连续钢桁梁+(108+192+336+336+192+108) m六跨连续钢桁拱桥.六跨连续钢桁拱桥分4个合龙点,先192 m边跨合龙,再中跨合龙.介绍该桥主桥南边跨合龙的特点、技术措施、合龙前的架设状态、合龙步骤.  相似文献   

13.
荆岳长江公路大桥中跨合龙施工技术   总被引:1,自引:0,他引:1  
荆岳长江公路大桥主桥为跨径布置(100+298) m+816 m+(80+75+75)m的混合梁斜拉桥,主梁由扁平钢箱梁和分离式混凝土边箱梁组成,中跨钢箱梁合龙段长16.4m,重305 t,采用2台桥面吊机抬吊施工.该桥中跨合龙采用半配切半顶推的施工方案,通过统计方法预测合龙温度为22℃,在此基础上考虑多种因素影响,精确计算合龙段无应力下料长度为16 454.4 mm,将合龙段在工厂精确匹配预制,设置牵引装置调整合龙口宽度,采用逐缝调整合龙缝宽度的方法进行合龙段位形调整,最终顺利实现中跨的高精度合龙.实践证明,采用该合龙施工技术能减轻对合龙温度的依赖,缩短合龙施工时间,提高合龙施工精度和质量.  相似文献   

14.
嘉鱼长江公路大桥主桥为主跨920 m的非对称高低塔单侧混合梁斜拉桥,北边跨混凝土主梁采用支架法施工,主跨及南边跨钢箱梁采用悬臂拼装法施工。该桥主跨2019年5月30日合龙,设定合龙温度(22℃)与设计基准温度(15℃)偏差较大,采用几何控制法进行合龙施工。在主跨合龙前,考虑温度影响修正合龙段制作长度,得到合龙温度条件下的梁长为4.342 8 m;考虑高温的影响设计并安装4台顶推阻尼器;利用顶推阻尼器完成顶推,调整合龙姿态并合龙。合龙姿态调整时,基于激光传感控制并调整合龙口宽度;采用临时荷载为主、斜拉索索力为辅的措施调整合龙口相对高差;通过对角交叉倒链调整轴线相对偏差。主跨合龙后,合龙口宽度及标高误差均小于5 mm,且合龙焊缝宽度均匀、无明显错台,满足设计要求。  相似文献   

15.
赣江西支特大桥主桥为(70 110 110 70)m预应力砼变截面连续箱梁桥,2个中跨和2个边跨各设1个长度为2 m的合龙段,随着边跨和中跨的合龙,结构先后完成2次体系转换。文中重点介绍了合龙计算分析、合龙段临时预应力和刚性支撑的设计,提出了合龙施工要点。  相似文献   

16.
瑞安飞云江三桥主桥最大跨径240 m,宽36.8 m,文章结合此桥的结构特点和边跨合龙施工的实际情况,对原有的合龙方案进行了优化,采取一种较为新颖的施工方案,这种合龙技术的成功应用,为同类型斜拉桥的施工方法及合龙施工提供了宝贵的实践经验.  相似文献   

17.
万华 《中外公路》2011,31(4):104-107
合龙段施工是大跨斜拉桥主梁施工的关键环节,文章以荆岳长江公路大桥超长合龙段的中跨合龙施工为例,介绍该桥主梁合龙段全新的施工技术,提出了全新的施工理念,即以精确控制合龙缝的中跨合龙思路取代以往精确控制合龙口的中跨合龙思路,取消了梁端配重和劲性骨架锁定措施,简化了施工过程,降低了合龙施工难度,优化了合龙段的长度设计,同时实...  相似文献   

18.
在大跨度预应力砼连续梁桥施工中,合龙段施工是关键环节,关系到全桥线形和受力状况。文中以金华江特大桥40 m+4×72 m+40 m悬臂连续梁边跨、中跨及次中跨合龙段施工为背景,探讨预应力砼连续梁桥合龙时间、合龙方案、合龙顺序、体系转换以及施工配重等技术。  相似文献   

19.
援马尔代夫中马友谊大桥主桥为(100+2×180+140+100+60)m混合梁V形支腿连续刚构桥,180m跨和140m跨跨中区段主梁采用钢箱-超高性能混凝土叠合梁(每段叠合梁两端各包含长4.0m的钢-混结合段),其跨中分别设置50m和22m长的钢箱梁合龙段。因施工海域长周期波涌浪强烈,该桥大节段钢箱梁采用顶推合龙方案施工。在起吊钢-混结合段钢壳时,采用自动脱空的铰支架机构,以防止其碰撞甲板;在吊装小节段钢箱梁(50m长的钢箱梁合龙段分为4个小节段)至混凝土箱梁顶时,采用横向油气弹簧+竖向橡胶支垫的落梁缓冲技术,以防止钢箱梁下落时与混凝土梁体碰撞;顶推时,通过支点反力和导梁应力双控来保证结构安全,并通过调整混凝土梁顶部压重来控制主墩平衡弯矩;钢箱梁采用横向错位工艺合龙,实现了高精度配切合龙。  相似文献   

20.
宁波三官堂大桥主桥为(160+465+160)m连续钢桁架桥,主梁采用2片主桁,变高、N形桁式,全焊结构,一跨过江。该桥主梁采用悬臂拼装,江中不设临时墩。采用MIDAS Civil软件建立主桥空间模型,模拟桥梁施工过程,结合有限元计算进行该桥施工控制。施工中,通过设置制造预拱度、凌晨安装、采用角度法控制安装坐标、控制焊缝变形等进行预拱度控制;合龙后通过边墩顶升0.8m的方式调整主梁受力;通过在边墩设置高强拉杆及张拉进行抗倾覆控制;采用温度配切法进行合龙控制。通过以上施工控制关键技术,合龙前两岸弦杆相对高差为7mm;桥梁抗倾覆系数不小于1.3;上弦实测最大拉应力由266 MPa降到142 MPa;合龙后合龙口实测误差10mm,满足要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号