首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
引入数学上的 NURBS曲线来表达翼型几何,成功实现翼型几何的自动变形与重构;之后借助于Isight优化平台,集成CFD技术构建二维翼剖面的多目标自动优化设计流程;并选择NACA 661-212翼型为设计对象,在兼顾效率和空泡性能的前提下,以升阻比和最小压力系数为设计目标进行优化设计,最终得到在相应设计点处两目标均有改善的翼型。该结果表明此设计方法的可行性,对推广至三维螺旋桨的优化设计提供一定的借鉴经验。  相似文献   

2.
Hydrodynamic optimizations of ship hull forms have been carried out employing parametric curves generated by fairness-optimized B-Spline form parameter curves, labeled as F-Spline. Two functionalities of the parametric geometry models are used in the present study: a constrained transformation function to account for hull form variations and a geometric entity used in full parametric hull form design. The present F-Spline based optimization procedure is applied to two distinct hydrodynamic hull form optimizations: the global shape optimization of an ultra-large container ship and the forebody hull form for the hydrodynamic optimization of an LPG carrier. Improvements of ship performance achieved by the proposed F-Spline procedure are demonstrated through numerical experiments and through correlations with experimental data. The ultra-large containership was built and delivered to the ship owner. The present study validates the effectiveness of the proposed hydrodynamic optimization procedure, ushering in process automation and performance improvement in practical ship design practices.  相似文献   

3.
复杂圆柱壳结构是船舶结构的主要形式,建立其快速声学优化分析方法对促进船舶结构声学设计, 实现“分析驱动设计”理念具有重要价值。基于隐式参数化建模方法,建立船舶复杂圆柱壳结构参数化模型库,提出基于参数化模型的船舶圆柱壳结构声学优化分析方法,解决了分析流程中数据自动传输、软件调用和变量控制等问题。算例结果表明所提方法是合理的,初步满足船舶复杂圆柱壳结构声学优化设计需求。  相似文献   

4.
针对船舶结构设计变量是涉及多种设计和约束条件的离散变量,造成结构优化的高度非线性、多峰性等问题,而且设计过程中需要设计规范和专家经验等知识支持,结合其具有很强的综合性、模糊性等特点,提出了基于知识工程的船舶结构优化设计方法。该方法利用知识工程与结构优化相结合,将获取的设计知识构建知识库应用于船舶结构优化设计,并通过知识工程技术实现参数化结构模型与优化数学模型的相互转化,降低结构优化设计对用户知识水平的要求。水密横舱壁结构的优化设计算例表明,满足约束要求的情况下,其结构重量在优化后比优化前降低了,保证了结构性能合理的同时实现重量最轻的目标;将结构参数化模型和数学优化模型结合在一起,为设计经验少的设计者提供了一种结构设计的捷径;实现了从不同资源中获取知识并应用于优化设计过程,促进设计能力的提高,降低优化设计过程对知识和经验的依赖。  相似文献   

5.
在对系统功能进行总体分析的基础上,采用SQL Server 2005建立了系统所需的船型数据库。使用ASP.NET技术和集成开发工具Microsoft Visual Studio 2008,选用C#为编程语言,调用船舶设计软件Free!ship开发了基于Web的船型变换系统。研究结果表明,该系统可以方便快捷地生成船体型线,加速船舶设计进程,实现船型数据共享。  相似文献   

6.
采用船型优化方法就超大型集装箱船10 000TEU的能效设计指数(EEDI)进行优化.文中以降低对主机功率的需求、提高能效设计水平为目标,优化该超大型集装箱船的阻力性能.优化时利用平移法和径向基函数方法进行船体曲面重构,并分别采用基于Rankine源非线性势流理论和边界层动量积分计算兴波阻力和摩擦阻力,最后同时使用遗传算法(NSGA-Ⅱ)和序列二次规划算法(NLPQL)在设计空间中探索满足约束条件的阻力最优船型.结果表明,通过该优化方法获得的最优船型,其能效设计指数优化程度明显,能够满足现阶段IMO对新造集装箱船计及折减系数后的强制要求.  相似文献   

7.
With the gradual implementation of offshore wind energy production, the future tendency is to expand into the deeper water. The jacket foundations will take the place of the present monopile foundations when the water depth increases. The foundations account for the majority of the construction cost for offshore wind farms, and the structural optimization of jackets will bring lucrative economic benefits. Structural optimization is a complex iterative process that requires huge computing costs. Therefore, this paper proposes a structural optimization method based on surrogate models to solve this problem effectively and swiftly obtain optimized design schemes of lightweight jackets for offshore wind turbines. The structural responses of jacket wind turbine systems under the equivalent static extreme loads with a recurrence period of 50 years are mainly considered in structural optimization design, and the key optimization variables of jackets are determined by parameter sensitivity analysis. The finite element models of jackets are transformed into surrogate models, and the genetic algorithm is employed to optimize the surrogate models directly. The optimized jackets are additionally verified through coupled dynamic analysis, besides, buckling strength and fatigue life are also checked. And local refined optimizations are carried out for the failure members. According to the optimized design schemes of lightweight jackets for 30 m, 50 m and 70 m water depths, it is demonstrated that the structural optimization design method is adequate and efficient for jackets of wind turbines. Parameter sensitivity analysis can cut the number of optimization variables in half to improve the optimization efficiency. Furthermore, the application of surrogate models can significantly speed up the optimization process by saving about 98.61% of the original time consumed. The optimization design method of the jackets for offshore wind turbines proposed in this paper is suitable for practical engineering, with high precision and efficiency.  相似文献   

8.
遗传算法的改进及其在超大型油船结构优化中的应用   总被引:1,自引:0,他引:1  
遗传算法是一种基于适者生存理念的随机搜索算法,它具有极强的全局搜索能力,且不需要知道问题的导数信息.然而,简单遗传算法局部搜索能力差以及易于早熟.文章编制了一种基于实数编码的适用于连续型变量的遗传算法,比较适合于多峰函数的全局寻优,且对之略作改进,也可用于离散型变量优化.采用大量经典数学测试函数对该遗传算法的优化能力进行测试,取得了很好的优化结果.在此基础上,选用经典10杆桁架结构对该算法的寻优能力进行了验证.最后,以一艘超大型油船的典型中横剖面作为研究对象,选取396个设计变量,所有变量在优化过程中都进行了离散化处理,应用JTP规范[1]作为校核依据,采用该遗传算法进行优化设计.经过优化后,船中剖面面积下降了2.6%.  相似文献   

9.
A reliability-based design optimization (RBDO) methodology is presented for the design of a steel catenary riser (SCR) under dynamic environmental loads. The purpose of this work is to optimize the cost of products subjected to probabilistic constraints. Searching for the optimal design of the riser in a wide range of design variables is computationally very expensive if time-consuming codes for dynamic analysis are necessary in the iteration process. In this study, the effectiveness of the proposed RBDO using a metamodel is firstly studied and validated through a beam test, then applied to the industrial dynamic optimization problem. The design variables of structures are assumed to be uncertain, and some other parameters such as loading and material properties are considered random. The performance function is approximated using metamodels to avoid time-consuming finite-element analysis during the optimization iteration. A single-loop method is used to decouple the double-loop RBDO problem. The reliability is finally confirmed through Monte Carlo simulations. According to the analysis, the presented methodology is more rational and realistic compared with deterministic optimization.  相似文献   

10.
基于CFD的船舶球首型线自动优化   总被引:4,自引:0,他引:4  
在满足排水量及航速要求情况下设计出性能优良的船体型线,降低船体阻力、节能降耗是造船界一直所追求的目标。船舶球首的大小、位置和形状对船体兴波影响非常大,因此文章通过船型参数化融合方法,生成一系列球首型线,并以兴波阻力最小为目标,采用遗传算法实现球首型线的自动优化。将上述方法应用于某集装箱船球首型线的自动优化,并进行船舶静水阻力实验,实验表明优化船型在设计航速附近总阻力降低明显,说明文中采用的基于CFD船型自动优化方法是可行的。  相似文献   

11.
This study presents a numerical method for optimizing hull form in calm water with respect to total drag which contains a viscous drag and a wave drag. The ITTC 1957 model-ship correlation line was used to predict frictional drag and the corrected linearized thin-ship theory was employed to estimate the wave drag. The evolution strategy (ES) which is a member of the evolutionary algorithms (EAs) family obtains an optimum hull form by considering some design constraints. Standard Wigley hull is considered as an initial hull in optimization procedures for two test cases and new hull forms were achieved at Froude numbers 0.24, 0.316 and 0.408. In one case the ES technique was ran for the initial hull form, where the main dimensions were fixed and the only variables were the hull offsets. In the other case in addition to hull offsets, the main dimensions were considered as variables that are optimized simultaneously. The numerical results of optimization procedure demonstrate that the optimized hull forms yield a reduction in total drag.  相似文献   

12.
In this paper, we present the application of probabilistic design modeling and reliability-based design optimization (RBDO) methodology to the sizing optimization of a composite advanced submarine sail structure under parametric uncertainty. With the help of probabilistic sensitivity analysis, the influence of individual random variables on each structural failure mode is examined, and the critical modes are treated as probabilistic design constraints under consistent lower bounds on the corresponding reliability indices. Whereas the failure modes are evaluated for structural components in the solution of the RBDO problem, the overall system reliability is also evaluated as a post-optimization step. The results indicate that in comparison to a deterministic-optimum design, the structural mass of the probabilistic optimum design is slightly higher when consistent probabilistic constraints are imposed, and the overall structural stiffness is found to be more critical than individual component laminate ply thicknesses in meeting the specified design constraints. Moreover, the post-optimality analysis shows that the overall system failure probability of the probabilistic optimum design is more than 50% lower than that of the deterministic optimal design with less than 5% penalty in structural mass.  相似文献   

13.
潜器型线优化设计是一个多目标优化问题,在型线设计过程中,阻力性能与包络体积的要求是相互冲突的。为了解决计算流体力学软件如Fluent在进行潜器的外形优化设计时效率低下问题,采用Kriging模型代替仿真模型进行潜器外形设计的策略,其基本思想是:选取设计变量和样本点,利用ICEM软件建立参数化的水动力分析模型,用Fluent软件计算得到样本点的阻力响应值,建立反映设计变量与响应之间关系的Kriging模型,将阻力和体积作为潜器外形优化的两个目标,利用多目标遗传算法求出Pareto最优解。由于采样策略对Kriging模型精度影响很大,本文提出了一种新的序贯采样方法命名为加权累积误差方法,来选取样本点以提高Kriging模型精度。结果表明提出的序贯Kriging建模技术能极大提高潜器型线优化设计效率,同时保证设计精度。  相似文献   

14.
对于潜艇外壳等外压容器来说,满足稳定性要求至关重要。本文利用Matlab编写改进粒子群算法优化程序,利用 Ansys的 Apdl语言完成了环肋圆柱壳的参数化建模,以圆柱壳厚度、肋骨尺寸和肋距作为离散设计变量,以稳定性要求作为约束条件,构造了合适的惩罚函数,以质量最轻作为设计目标,实现了基于 BP神经网络和粒子群算法的环肋圆柱壳优化设计。在优化过程中,首先采用拉丁超立方体抽样完成了样本点的选取,然后对样本点进行有限元分析,根据有限元分析结果构建 BP神经网络代理模型,并探讨了样本点数量对代理模型预测精度的影响,最后采用改进粒子群算法对代理模型进行优化。优化结果表明,对于需要考虑离散变量和复杂非线性约束的结构优化问题,采用 BP神经网络和粒子群算法联合优化的方法能够节省大量计算时间,并达到理想的优化效果。  相似文献   

15.
Numerical optimization of the initial design of a fast catamaran (high-speed sealift research model B, HSSL-B) has been carried out through a simulation-based design (SBD) framework, based on an advanced free-surface unsteady Reynolds-averaged Navier–Stokes (URANS) solver and a potential flow solver, and global optimization (GO) algorithms. The potential flow computational fluid dynamics (CFD) SBD was used to guide the more expensive URANS CFD SBD. The fluid-dynamic analysis of the flow past the catamaran proved that the use of the URANS solver was fundamental in dealing with the multihull interference problem. In the case investigated, the separation distance was small and the viscous flow quite distorted by the proximity of the hulls, so that only viscous solvers could correctly capture the flow details. Sinkage and trim effects, due to the high speed range and again to the small separation distance investigated, are also relevant. The initial HSSL-B geometry and three optimization problems, including single- and multiobjective optimization problems, proposed by designers from Bath Iron Works, were successfully optimized/solved, and finally an experimental campaign was carried out to validate the optimal design. A new verification and validation methodology for assessing uncertainties and errors in simulation-based optimization was used based on the trends, i.e., the differences between the numerically predicted improvement of the objective function and the actual improvement measured in a dedicated experimental campaign, including consideration of numerical and experimental uncertainties. Finally, the success of the optimization processes was confirmed by the experimental measurements, and trends for total resistance, sinkage, and trim between the original and optimal designs were numerically and experimentally verified and validated.  相似文献   

16.
以波浪中的运动和增阻为目标,进行了五体船主体型线、片体主尺度和布置的协同优化。解决了型线自动变换、参数化自动建模及计算网格合并等关键技术,实现了五体船全船的自动建模。利用ISIGHT进行建模与水动力计算的集成,建立了主片体协同多目标优化系统。运用遗传算法进行多目标优化,结果表明优化后五体船运动和增阻都有所改善,并对非规则波中的情况进行了一定的探讨。  相似文献   

17.
苟鹏  崔维成 《船舶力学》2006,10(1):62-70
本文提出了一种基于SIMP密度函数插值模型,考虑依赖于结构形状的载荷,以给定材料用量为约束条件,以最小柔顺度为设计目标的拓扑优化方法-OC-LE法.文中考虑的载荷随结构拓扑的变化而渐进变化,载荷与拓扑变量交替更新,计算简单且易于程序实现.同时文中给出的二维连续体结构拓扑优化算例,向三维连续体的扩展也比较容易.  相似文献   

18.
[目的]为探索高效的螺旋桨优化设计方法,基于面元法开展伴随优化方法的研究.[方法]通过桨叶表面法向速度为零条件和等压库塔条件建立伴随方程,得到敏感导数求解式.以DTMB 4381螺旋桨为对象,分别运用伴随方法和传统的求解控制方程方法计算螺旋桨性能与参数之间的敏感导数;基于伴随方法对某螺旋桨进行敏感导数分析,再根据敏感导...  相似文献   

19.
外形参数化是水下滑翔机外形优化设计的重要内容,针对现有几何参数化方法在翼身融合水下滑翔机外形参数化中存在的问题,本文提出一种基于FFD和轴变形方法的翼身融合水下滑翔机外形参数化建模方法。该方法首先基于B样条方法,建立翼身融合水下滑翔机外形的FFD参数化模型,实现滑翔机外形的自由变形;然后在此基础上,针对FFD参数化方法优化变量多的缺点,提出一种翼身融合水下滑翔机外形的轴变形参数化方法,对FFD控制体进行间接变形操纵,减少优化变量的数目;最后通过实例对所提方法的有效性进行了验证。  相似文献   

20.
采用遗传算法进行球鼻艏优化的流体动力计算(英文)   总被引:1,自引:0,他引:1  
Computational fluid dynamics(CFD) plays a major role in predicting the flow behavior of a ship.With the development of fast computers and robust CFD software,CFD has become an important tool for designers and engineers in the ship industry.In this paper,the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool.CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters,automatic generation of mesh,automatic analysis of fluid flow to calculate the required objective/cost function,and finally an optimization tool to evaluate the cost for optimization.In this paper,integration of a genetic algorithm program,written in MATLAB,was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT.Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters.These design variables were optimized to achieve a minimum cost function of "total resistance".Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号