首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 406 毫秒
1.
孔腔流动从属于与自持振荡密切相关的一类基本流动.在工业领域中,孔腔流动会引起结构振动与疲劳、噪声的产生与阻力的急剧增加,因而备受关注.文章通过大涡模拟结合FW-H声学类比方法,对于五种不同尺寸的方形孔腔在水中的流动发声进行了数值预报.首先,简要介绍了国际上采用大涡模拟结合声学类比在孔腔流激噪声数值预报方面所做的一些研究;其次,详细描述了所使用的大涡模拟方法、动态Smagorinsky亚格子模型以及FW-H声学类比方法.最后,详细分析了计算结果,包括孔腔中的流谱、孔腔与载体上的涡量分布以及五个孔腔的辐射噪声频谱.将噪声的计算结果与试验结果进行了对比,验证了文中所建立的数值预报方法的可靠性.  相似文献   

2.
张楠  王星  谢华  李亚 《船舶力学》2016,20(7):892-908
在流声耦合领域中,水下航行体复杂流动与流激噪声研究具有重要的学术意义与实用价值。文章对FW-H声学类比方法、渗流FW-H声学类比方法、Kirchhoff方法与Powell涡声理论进行了物理内涵与数学公式的详细比较;然后利用大涡模拟结合四种声计算方法数值计算了三维NACA0015机翼、机翼/圆柱结合体、方腔产生的流激辐射噪声,并与国内外试验结果进行了对比,分析了四种声计算方法的计算精度与计算效率;最后,对围壳流激噪声进行了数值预报与试验验证,计算了围壳在不同水速下的流激噪声变化规律,并探讨了声学积分面对计算结果的影响。  相似文献   

3.
孔穴流激噪声的计算与验证研究   总被引:4,自引:1,他引:3  
流激噪声的预报问题是流体动力声学领域的重点和难点.在气动声学领域,人们对此问题进行了很多探索,而在水声学领域,该问题尚缺乏深入的研究,文章的目的在于初步建立适用于水中流激噪声预报的数值方法.通过大涡模拟(LES)方法和FW-H声学类比方法,计算了两类孔穴的流激噪声问题.分析了声压谱级,壁面压力功率谱、涡量分布等,并利用试验结果对数值预报进行了验证.研究表明,计算结果量级可靠,符合声学一般规律.  相似文献   

4.
张楠  李亚  王志鹏  王星  张晓龙 《船舶力学》2015,(11):1393-1408
孔腔流动中含有复杂的流体振荡,不但能够引起明显的噪声,而且会造成物体脉动压力和阻力的急剧增加,因而孔腔流动与流激噪声已经成为流声耦合研究领域的重要内容。文章首先对于Powell涡声理论进行了介绍,给出了涡声方程及其求解的详细推导过程,随后利用圆柱/机翼组合体与方腔流激噪声测试结果验证了计算方法的可靠性,最后采用大涡模拟方法结合Powell涡声方程数值计算了两型孔腔在不同水速下的流激噪声,并与中国船舶科学研究中心循环水槽试验结果进行了对比分析,结果表明数值计算方法能够较准确地预报孔腔流激噪声,并能展示孔腔内外涡旋结构。计算结果表明:在500 Hz以下的低频段,格栅1型孔腔的流激噪声显著高于格栅2型孔腔;在500 Hz-10 k Hz高频段,格栅2型孔腔流激噪声比格栅1型孔腔高,但随着流速的增高,两种孔腔流激噪声在高频段的幅值基本一致。这些现象与孔腔内的涡旋结构密切相关。文中对孔腔流激噪声的数值预报方法进行了验证,有益于理解孔腔非定常流动的物理机理,且为抑制孔腔流激噪声奠定了基础。  相似文献   

5.
随着舰艇管路系统中阀门、泵及弯管等部件流激噪声问题的日益突出,水动力流激噪声数值计算方法逐渐受到关注。针对阀门的流动诱导噪声问题,文章结合大涡模拟和Lighthill声类比理论,建立了流激噪声混合计算方法并对类阀空腔模型进行了数值模拟和验证。首先,流场采用大涡模拟计算了低马赫数下三维类阀空腔模型的非定常流动。然后,将流场计算结果导入ACTRAN,通过ACTRAN中基于有限元/无限元的Lighthill声类比理论对流噪声进行求解。最终将流激噪声计算结果与声学试验进行了对比分析。对比结果表明,该流激噪声混合计算方法可行且计算结果可靠,可应用于水动力噪声的研究。  相似文献   

6.
孔腔流动中包含着流动分离和失稳以及涡旋相互干扰等复杂的流动现象。孔腔涡旋流动引起的流体振荡能够引起脉动压力的显著增加从而产生强烈的噪声,在工程实际中备受关注。湍流脉动压力是流激噪声的重要来源,也是湍流研究中的基础性问题,对其进行数值计算研究是流声耦合领域的重要内容,而湍流脉动压力波数—频率谱的构建更是该领域的技术难点。文章采用大涡模拟方法(LES)对孔腔脉动压力进行了数值模拟,考察了四套网格和四种亚格子应力模型对计算结果的影响,并与试验结果进行比较,验证数值计算方法的可靠性。首先采用大涡模拟方法计算了孔腔的脉动压力,并与中国船舶科学研究中心的空泡水筒试验结果进行对比分析。接着详细地分析孔腔脉动压力,研究亚格子应力模型和网格数量对计算结果的影响。最后,对数值计算得到的脉动压力多元阵列结果进行时间/空间Fourier变换,构建了三维脉动压力波数-频率谱。该文工作对今后流激结构振动噪声的预报和流动控制研究奠定了基础。  相似文献   

7.
孔腔流动与流激噪声是流声耦合研究领域的重要课题。文章基于大涡模拟方法与Kirchhoff积分,探讨了水中孔腔流动的发声机理。由孔腔流动振荡模态分析可知,在水中较低马赫数情况下,流体共振模态极难存在,故而流体动力振荡是产生孔腔流激噪声的根源,从而揭示了孔腔流激噪声形成的机理。进而又基于Kirchhoff控制面积分与物体壁面积分,辨识了偶极子声源和四极子声源对于流激噪声影响量级以及频谱分布规律,并结合流体动力声源的数学表达、Lighthill应力张量的频谱分析和壁面效应分析,指出了孔腔中涡旋对于流场脉动量声学效应的输运作用是孔腔流激噪声传播的成因,从而揭示了孔腔流激噪声传播的机理。  相似文献   

8.
张楠  李亚  黄苗苗  陈默 《船舶力学》2021,25(11):1439-1451
本文给出了基于大涡模拟(LES)与Powell涡声理论的艇桨耦合状态螺旋桨水动力与噪声数值预报方法.首先描述了LES方法与Powell涡声理论及其声学远场解;然后利用LES结合滑移网格计算了AU5-65螺旋桨敞水工况的水动力,得到了推力系数、扭矩系数与敞水效率,给出了螺旋桨梢涡、叶根涡、毂涡的流动结构空间分布,又计算了SUBOFF潜艇带AU5-65螺旋桨自航工况水动力,获得了实效伴流分数、推力减额与相对旋转效率等自航因子,分析了螺旋桨在艇后旋转时的涡旋结构,并将敞水与自航水动力计算结果与试验结果进行了对比分析,验证了流动计算方法的可靠性;最后,在对流动声源数值计算的基础上,对敞水与自航工况下的螺旋桨噪声进行了数值预报,并与试验结果进行了对比分析,分析了声压谱谱型与幅值,辨识了艇桨耦合流动对于螺旋桨噪声的影响,验证了数值预报方法的适用性与可靠性.  相似文献   

9.
针对目前水动力声学领域的孔腔流噪声研究大都基于单孔全开口模型的局限性,本文基于大涡模拟-声类比混合方法对局部开孔深腔体模型的孔腔流噪声发声机理进行研究。首先,对流场涡量、压强变化进行分析,得到涡结构的不断运动迁移和腔体孔壁后缘的碰撞发声构成的涡-声反馈是不同测点之间所测压强周期一致、相位不同的原因;其次,对不同测点的压强功率谱、空腔内声学模态频率进行分析,得到孔后壁上缘区域的压力脉动是局部开孔深腔体自持振荡发声的主要声源;最后,将所测声场特征线谱频率与经验公式的预测结果进行对比,验证了仿真结果的准确性。  相似文献   

10.
梳理了低马赫数流动噪声计算预测的因素,采用不可压缩流体流动的大涡模拟与Ffowcs Williams-Hawkings(FW-H)积分方法耦合对某非流线体绕流发声进行了数值计算与校验,并采用Lilley方程源项对声源特征进行了分析。结果表明,计算值与实测值相吻合。  相似文献   

11.
水下潜器在航行过程中,主要使用声呐来探测敌方舰艇以及自身位置.主声呐一般安放在潜艇首部位置,可分为主动声呐与被动声呐.在探测目标时,噪声是2种声呐系统都必须克服的干扰因素.针对自噪声中的流噪声,首先使用LES模型对水下潜器的外流场进行仿真计算.在获得流场中的脉动压力分布后,将其导入基于Lighthill声类比理论的声学软件ACTRAN中进行声场仿真计算,实现了对水下潜器首部声基阵区流噪声的数值预报.研究了航速、共形阵的安装位置和基阵单元安装面形状对声基阵区流噪声传播的影响.结果表明:航速越大,流噪声越大;增大声呐安装面与导流罩的距离以及使用较光滑的安装面,可以减小声基阵区流噪声的大小.  相似文献   

12.
Despite their high manufacturing cost and structural deficiencies especially in tip regions, highly skewed propellers are preferred in the marine industry, where underwater noise is a significant design criterion. However, hydrodynamic performances should also be considered before a decision to use these propellers is made. This study investigates the trade-off between hydrodynamic and hydroacoustic performances by comparing conventional and highly skewed Seiun Maru marine propellers for a noncavitating case.Many papers in the literature focus solely on hydroacoustic calculations for the open-water case. However, propulsive characteristics are significantly different when propeller-hull interactions take place. Changes in propulsion performance also reflect on the hydroacoustic performances of the propeller. In this study, propeller-hull interactions were considered to calculate the noise spectra.Rather than solving the full case, which is computationally demanding, an indirect approach was adopted; axial velocities from the nominal ship wake were introduced as the inlet condition of the numerical approach. A hybrid method based on the acoustic analogy was used in coupling computational fluid dynamics techniques with acoustic propagation methods, implementing the Ffowcs Williams-Hawkings(FW-H) equation. The hydrodynamic performances of both propellers were presented as a preliminary study.Propeller-hull interactions were included in calculations after observing good accordance between our results, experiments, and quasi-continuous method for the open-water case. With the use of the time-dependent flow field data of the propeller behind a nonuniform ship wake as an input, simulation results were used to solve the FW-H equation to extract acoustic pressure and sound pressure levels for several hydrophones located in the near field. Noise spectra results confirm that the highest values of the sound pressure levels are in the low-frequency range and the first harmonics calculated by the present method are in good accordance with the theoretical values. Results also show that a highly skewed propeller generates less noise even in noncavitating cases despite a small reduction in hydrodynamic efficiency.  相似文献   

13.
离心泵水动力噪声计算方法研究   总被引:1,自引:0,他引:1  
何涛  钟荣  孙玉东 《船舶力学》2012,16(4):449-455
离心泵作为舰船重要的流体机械,也是管路系统中主要噪声源之一。泵内流动诱发噪声的计算难点在于流噪声声源的准确模拟和边界条件的确定。文中采用CFD方法计算泵内流场并根据FW-H方程提取叶轮转动偶极子声源和蜗壳内表面偶极子声源;基于管道测试技术获得泵进出口边界条件,建立了以蜗壳为界的边界元模型,考虑了蜗壳对声传播的散射作用。通过内域声学直接边界元方法求解泵内声场,建立了离心泵水动力噪声的计算方法。通过试验测试对建立的计算方法进行了验证。计算分析表明:离心泵内主要噪声源为蜗壳表面偶极子声源;泵出口噪声大于入口,具有偶极子声源特性。  相似文献   

14.
在梳理流噪声数值预报方法的基础上,采用流场大涡模拟(large eddy simulation,LES)和声学边界元(boundary element method,BEM)方法在频域内计算预报了船体流噪声谱曲线,求取了其等效声中心.LES计算时选用动力学Smagorinsky-Lilly(dynamic Smagorinsky-Lilly,DSM)亚格子应力模型,流噪声由船体壁面脉动压力和法向速度特性决定,声源节点和声节点变量传递采用一对一的守恒传递方式.结果表明:某型船在航速14 kn时,裸船体流噪声在20 Hz~2 kHz频段内总声源级为133dB;当计算有效频段扩展到20 kHz时,总声源级达143.3 dB.流噪声主要来源于兴波引起的涡量,且主要集中于100 Hz~10 kHz频段.球首尾流区和船体尾涡区对流噪声辐射量贡献明显,特别是球首尾流区,对全频段都有明显的贡献,为水面舰艇流噪声研究提供了一条新的途径.  相似文献   

15.
The flow noise associated with sinusoidal vertical motion of a sonobuoy restrains its working performance.In practice,a suspension system consisting of elastic suspension cable and isolation mass is adopted to isolate the hydrophone from large vertical motions of the buoy on the ocean surface.In the present study,a theoretical model of vertical motion based on the sonobuoy suspension system was proposed.The vertical motion velocity response of the hydrophone of a sonobuoy can be obtained by solving the theoretical model with Runge-Kutta algorithm.The flow noise of the hydrophone at this response motion velocity was predicted using a hybrid computational fluid dynamics(CFD)-Ffowcs Williams-Hawkings(FW-H) technique.The simulation results revealed that adding the elastic suspension cable with an appropriate elastic constant and counterweight with an appropriate mass have a good effect on reducing the flow noise caused by the sonobuoy vertical motion.The validation of this hybrid computational method used for reliable prediction of flow noise was also carried out on the basis of experimental data and empirical formula.The finds of this study can supply the deep understandings of the relationships between flow noise reduction and sonobuoy optimization.  相似文献   

16.
不同形式表面开孔水下回转体流噪声特性研究   总被引:2,自引:0,他引:2  
应用DES(Detached Eddy Simulation)湍流模型模拟表面开孔水下回转体在一定来流速度下非定常流体力学现象,分析开孔附近的精细流动结构及流场时频特性;结合FW-H模型计算开孔体流噪声,分析噪声频谱及总噪声级指向性特点。对两种方案开孔形式的回转体流场及流噪声特性进行对比。结果表明:其中的一个方案较另一方案阻力增加1%,脉动幅值也较大;两方案指向性相似,方案1的噪声级在各方向上较方案2约大4dB。频谱分析结果表明,造成方案1噪声相对较大的主要原因是孔穴流动的相互干扰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号