首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
小水线面双体船独特的片体结构使横向波浪载荷成为其最危险的波浪载荷.在小水线面双体船设计初期,片体间距的确定十分重要.本文根据工程中某小水线面双体船的相关资料,对其正常装载状态、满载状态和最大排水状态3种装载状态进行波浪载荷预报.采用三维频域计算方法,对不同片体间距的小水线面双体船进行波浪载荷预报,给出各横向波浪载荷分量的RAO值和长短期预报值,并将波浪载荷的长期预报值与ABS和CCS中载荷的规范值进行比较.通过比较不同片体间距小水线面双体船的载荷预报值,得到小水线面双体船片体间距对其波浪载荷的影响特性,为小水线面双体船的初步设计提供依据.  相似文献   

2.
采用基于三维时域Rankine源方法的水动力分析软件Wasim,对某小水线面双体科考船在不同航速、不同海况与不同浪向下的耐波性进行了计算与分析,重点对不同工况下小水线面双体船横摇、纵摇和垂荡性能进行了研究.研究表明:无航速时,横摇有义单幅值极大值出现在90°浪向,纵摇极大值出现在0°与180°浪向;较高航速时,横摇响应最大单幅值出现在60°与90°浪向,纵摇在30°,150°和180°浪向时明显较大;波浪对连接桥的砰击会显著影响SWATH船的运动响应,使垂荡运动幅值显著增大;随航速的提高,顺浪航行下纵摇运动幅值逐渐减小.  相似文献   

3.
《舰船科学技术》2016,(3):13-17
小水线面双体船独特的片体结构使横向波浪载荷成为其最危险的波浪载荷。在小水线面双体船设计初期,片体间距的确定十分重要。本文根据工程中某小水线面双体船的相关资料,对其正常装载状态、满载状态和最大排水状态3种装载状态进行波浪载荷预报。采用三维频域计算方法,对不同片体间距的小水线面双体船进行波浪载荷预报,给出各横向波浪载荷分量的RAO值和长短期预报值,并将波浪载荷的长期预报值与ABS和CCS中载荷的规范值进行比较。通过比较不同片体间距小水线面双体船的载荷预报值,得到小水线面双体船片体间距对其波浪载荷的影响特性,为小水线面双体船的初步设计提供依据。  相似文献   

4.
针对某大型小水线面双体船,进行波浪载荷直接计算。根据规则波中波浪载荷RAO特性和其波浪载荷的长期预报结果,确定该船的设计载荷。并将该设计载荷与CCS《小水线面双体船指南》(2005)中设计载荷进行对比和分析,指出规范对于大尺度大排水量小水线面双体船波浪载荷计算的局限性。同时,由该船波浪载荷长期值沿船长和船宽的分布,分析其波浪载荷的分布规律,为工程中大排水量小水线面双体船的结构设计和加载计算提供参考。  相似文献   

5.
摘要:针对某大型小水线面双体船,进行波浪载荷直接计算。根据规则波中波浪载荷RAO特性和其波浪载荷的长期预报结果,确定该船的设计载荷。并将该设计载荷与CCS《小水线面双体船指南》中设计载荷进行对比和分析,指出规范对于大尺度大排水量小水线面双体船波浪载荷计算的局限性。同时,由该船波浪载荷长期值沿船长和船宽的分布,分析其波浪载荷的分布规律,为工程中大排水量小水线面双体船的结构设计和加载提供参考。  相似文献   

6.
小水线面船水动力特性试验研究   总被引:1,自引:0,他引:1  
从受力分析出发,作了5条小水线面双体船约束模型水动力试验研究,并与拖曳船模试验结果作了比较,两者之间有较好的一致性。根据试验结果,分析了在约束情况下的小水线面双体船的水动力特性,认为约束船模试验是从船舶水动力特点去研究中低速下小水线面双体船的航行姿态和稳定性能的一种有效手段。并可为小水线面双体船的3维流体力学理论计算,性能预报模型提供验证,修正基础依据。文章并提供了一种依据试验方法去确定小水线面双体船姿态控制鳍面积的方法。  相似文献   

7.
斜支柱小水线面双体船初稳性特征研究   总被引:1,自引:1,他引:0  
对斜支柱小水线面双体船初稳性进行研究分析.在直支柱小水线面双体船的原理基础上,结合支柱倾斜所产生的问题和特殊性,分析得出了斜支柱小水线面双体船初稳性的计算方法并编写Fortran程序简化计算.进行实例计算,计算结果表明斜支柱小水线面双体船初稳性好于直支柱.随着支柱与水线面夹角逐渐减小,初稳性高GM增大.  相似文献   

8.
小水线面双体船波浪设计载荷估算方法   总被引:6,自引:1,他引:5  
以中国船舶科学研究中心开展的200 t至3 500 t多艘SWATH船模试验结果和美国的15艘从3 000 t至30 000 t小水线面双体船波浪载荷模型试验资料为基础,给出了小水线面双体船波浪设计载荷估算公式.用该估算公式算得的小于3 000 t的小水线面双体船的波浪设计载荷的估算值更加接近模型试验结果,而小于目前常用的ABS公式估算值,从而可较大地减轻结构质量和建造成本.根据小水线面双体船受力特点,还提出了小水线面双体船在进行横向强度、扭转强度、总纵强度校核时各种载荷的组合方案和施加方式,供结构设计人员全面、合理地进行强度分析参考.  相似文献   

9.
小水线面双体船因其优异的耐波性能而成为当前重要的高性能船型之一。本文概述了小水线面双体船的发展进程和国内外的研究状况,重点分析了小水线面双体船在快速性、耐波性等水动力性能和结构设计上的特点,以期能给我国高性能船型尤其是小水线面双体船的开发提供参考。  相似文献   

10.
小水线面双体船(SWATH)由于具有良好的船舶快速性、耐波性、稳性和效率高等特点,已经成为新船型的代表。根据小水线面双体船的船型结构特点,在操纵运动数学模型的基础上,充分考虑小水线面船的结构特点和双体、双桨、双舵之间水动力的相互影响,采用细长体理论计算了附加质量、附加惯性矩和线性水动力导数,编制了双体船操纵运动预报程序,并结合实例对SWATH的操纵性能进行了预报。  相似文献   

11.
New and efficient installation concepts which can reduce the cost of developing an offshore wind farm are of particular interest. This paper explores a promising concept using the small water-plane area twin-hull vessel (SWATH) to install pre-assembled wind turbines (OWT) onto floating spar foundations. A focus is placed on the hydrodynamic performance of the SWATH and the response analysis of the coupled SWATH-spar system. Firstly, the numerically calculated difference-frequency wave force effect and damping forces of the original SWATH were verified with experimental data. Secondly, the original SWATH was modified to satisfy the criteria of weight-carrying capacity and hydrostatic stability. Thirdly, a multibody numerical model for the SWATH-spar system was developed, in which the hydrodynamic and mechanical couplings between the SWATH and a spar were considered. The SWATH is equipped with a dynamic positioning system to counteract the slow-drift wave force effects. The nonlinear time-domain simulations were carried out for the mating stage when a wind turbine is lifted above the spar foundation. Based on the analysis of statistics of the relative displacement and velocity of the tower bottom and the spar top, the installation concept with SWATH is found to be of decent performance. Finally, recommendations are provided for future research on this concept, which contributes to developing next-generation installation concepts for bottom-fixed and floating wind farms.  相似文献   

12.
小水线面双体船纵向运动控制系统的试验研究   总被引:7,自引:1,他引:6  
提出了小水线面双体船纵向运动控制系统的数学模型,并建立了该系统的试验平台,开展了前后鳍静态和动态水动力特性试验,分别进行了无控船模和前后鳍控制船模在规则波中的耐波性试验.试验结果表明,所设计的前后鳍对该小水线面双体船具有可控性;由确定控制矩阵K的方法获得了初步优化的控制规律;经初步优化控制后的实船,在不规则波上的升沉和纵摇有义值分别下降26.9%和32.0%.  相似文献   

13.
文章基于粘性流体理论,采用CFD技术,通过对双体船变漂角旋臂运动的模拟,得到代表小水线面双体船舶操纵性能的水动力导数。利用MMG模型,对小水线面双体船的操纵性能进行初步预报。根据变漂角旋臂运动的数值模拟,既可从中得到仅仅与漂角和角速度有关的水动力导数,也可获得包括高阶导数和耦合导数在内的操纵性运动水动力导数。文章在保留三阶水动力导数的情况下,将代入高阶耦合水动力导数的操纵运动方程所绘制的回转圈与不代入高阶耦合水动力导数的回转圈进行对比,体现了高阶耦合水动力导数对于小水线面双体船操纵性预报的重要性,并以某双体船型为例,对其操纵性能进行预报。  相似文献   

14.
The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stern; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.  相似文献   

15.
The hydrodynamic analysis of a new semi-small waterplane area twin hull(SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stern; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.  相似文献   

16.
The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid(VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation forfurther studying the hydrodynamic performance of a propeller in waves.  相似文献   

17.
许慧洋 《船舶》2008,19(5):21-24
采用接触动力学理论,以MSC—DYTRAN为主要分析手段,仿真分析小水线面船触底搁浅过程,求出了典型小水线面船在触底过程中所受到的搁浅载荷、在搁浅载荷作用下的应力传播及分布规律、主要结构的强度性能,得出计算搁浅载荷的经验公式。  相似文献   

18.
基于SESAM软件计算自升式平台的波浪载荷。针对站桩状态的波浪载荷计算,需要选取环境参数、波浪理论和水动力系数;针对航行状态的波浪载荷计算,需要建立湿表面模型与质量模型、设置参数和预报波浪载荷。计算方法对其他类似结构的设计具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号