首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2466篇
  免费   129篇
公路运输   527篇
综合类   1007篇
水路运输   384篇
铁路运输   308篇
综合运输   369篇
  2024年   4篇
  2023年   14篇
  2022年   33篇
  2021年   47篇
  2020年   70篇
  2019年   58篇
  2018年   85篇
  2017年   83篇
  2016年   135篇
  2015年   125篇
  2014年   210篇
  2013年   161篇
  2012年   187篇
  2011年   207篇
  2010年   137篇
  2009年   160篇
  2008年   142篇
  2007年   181篇
  2006年   159篇
  2005年   100篇
  2004年   55篇
  2003年   38篇
  2002年   30篇
  2001年   59篇
  2000年   17篇
  1999年   23篇
  1998年   8篇
  1997年   16篇
  1996年   8篇
  1995年   3篇
  1994年   12篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1986年   1篇
  1984年   1篇
排序方式: 共有2595条查询结果,搜索用时 15 毫秒
61.
Compared with most optimization methods for capacity evaluation, integrating capacity analysis with timetabling can reveal the types of train line plans and operating rules that have a positive influence on improving capacity utilization as well as yielding more accurate analyses. For most capacity analyses and cyclic timetabling methods, the cycle time is a constant (e.g., one or two hours). In this paper, we propose a minimum cycle time calculation (MCTC) model based on the periodic event scheduling problem (PESP) for a given train line plan, which is promising for macroscopic train timetabling and capacity analysis. In accordance with train operating rules, a non-collision constraint and a series of flexible overtaking constraints (FOCs) are constructed based on variations of the original binary variables in the PESP. Because of the complexity of the PESP, an iterative approximation (IA) method for integration with the CPLEX solver is proposed. Finally, two hypothetical cases are considered to analyze railway capacity, and several influencing factors are studied, including train regularity, train speed, line plan specifications (train stops), overtaking and train heterogeneity. The MCTC model and IA method are used to test a real-world case involving the timetable of the Beijing–Shanghai high-speed railway in China.  相似文献   
62.
基于LSTM的舰船运动姿态短期预测   总被引:1,自引:0,他引:1  
舰船的六自由度运动状态形成复杂的非线性过程,运动姿态会受到耦合作用、不定周期、噪声信号以及混沌特性等因素的干扰,因此很难得到精确的预测结果.为了提升舰船运动姿态的预测精度,利用舰船时间序列的特点,建立了基于长短期记忆单元(LSTM)模型,对其进行了舰船姿态预测仿真,将结果与时间序列分析法的结果进行对比.实例分析表明:基于LSTM模型的预测方法具有精确度高、易实现的特点.这为舰船运动短期预测提供了一个新的思路和方法.  相似文献   
63.
Public charging infrastructure represents a key success factor in the promotion of plug-in electric vehicles (PEV). Given that a large initial investment is required for the widespread adoption of PEV, many studies have addressed the location choice problem for charging infrastructure using a priori simple assumptions. Ideally, however, identifying optimal locations of charging stations necessitates an understanding of charging behavior. Limited market penetration of PEV makes it difficult to grasp any regularities in charging behavior. Using a Dutch data set about four-years of charging transactions, this study presents a detailed analysis of inter-charging times. Recognizing that PEV users may exhibit different charging behavior, this study estimates a latent class hazard duration model, which accommodates duration dependence, unobserved heterogeneity and the effects of time-varying covariates. PEV users are endogenously classified into regular and random users by treating charging regularity as a latent variable. The paper provides valuable insights into the dynamics of charging behavior at public charging stations, and which strategies can be successfully used to improve the performance of public charging infrastructure.  相似文献   
64.
在交通管理和评价时,信号配时对监测评价路口运行状态,评价路口配时方案至关重要.但是,大范围的实时信号配时方案的获取尚缺乏简明有效的途径.本文提出两种基于移动导航数据计算固定配时路口信号配时的方法.第一种方法是在不考虑驾驶员驾驶行为差异性时,得到路口红灯和车均延误的关系模型,从而计算某相位的红灯时长.另外一种方法是基于车辆通过停止线的时间,结合本文提出的上升梯度法,得到某阶段红灯时长.本文通过实际的路口案例计算,将预测结果和已知路口的信号配时比较,表明此方法计算得到的红绿灯时长准确度较高,为后续进行路口运行状态和通行能力研究提供了数据支持.  相似文献   
65.
Vehicle time headway is an important traffic parameter. It affects roadway safety, capacity, and level of service. Single inductive loop detectors are widely deployed in road networks, supplying a wealth of information on the current status of traffic flow. In this paper, we perform Bayesian analysis to online estimate average vehicle time headway using the data collected from a single inductive loop detector. We consider three different scenarios, i.e. light, congested, and disturbed traffic conditions, and have developed a set of unified recursive estimation equations that can be applied to all three scenarios. The computational overhead of updating the estimate is kept to a minimum. The developed recursive method provides an efficient way for the online monitoring of roadway safety and level of service. The method is illustrated using a simulation study and real traffic data.  相似文献   
66.
Transit agencies implement many strategies in order to provide an attractive transportation service. This article aims to evaluate the impacts of implementing a combination of strategies, designed to improve the bus transit service, on running time and passenger satisfaction. These strategies include using smart card fare collection, introducing limited-stop bus service, implementing reserved bus lanes, using articulated buses, and implementing transit signal priority (TSP). This study uses stop-level data collected from the Société de transport de Montréal (STM)’s automatic vehicle location (AVL) and automatic passenger count (APC) systems, in Montréal, Canada. The combination of these strategies has lead to a 10.5% decline in running time along the limited stop service compared to the regular service. The regular route running time has increased by 1% on average compared to the initial time period. The study also shows that riders are generally satisfied with the service improvements. They tend to overestimate the savings associated with the implementation of this combination of strategies by 3.5-6.0 min and by 2.5-4.1 min for both the regular route and the limited stop service, respectively. This study helps transit planners and policy makers to better understand the effects of implementing a combination of strategies to improve running time and passenger’s perception of these changes in service.  相似文献   
67.
Transport infrastructure is long-term and in appraisal it is necessary to value travel time savings for future years. This requires knowing how the value of time (VTT) will develop over time as incomes grow. This paper investigates if the cross-sectional income elasticity of the VTT is equal to inter-temporal income elasticity. The study is based on two identical stated choice experiments conducted with a 13 year interval. Results indicate that the relationship between income and the VTT in the cross-section has remained unchanged over time. As a consequence, the inter-temporal income elasticity of the VTT can be predicted based on cross-sectional income elasticity. However, the income elasticity of the VTT is not a constant but increases with income. For this reason, the average income elasticity of the VTT in the cross-sections has increased between the two survey years and can be expected to increase further over time.  相似文献   
68.
Unreliable travel times cause substantial costs to travelers. Nevertheless, they are often not taken into account in cost-benefit analyses (CBA), or only in very rough ways. This paper aims at providing simple rules to predict variability, based on travel time data from Dutch highways. Two different concepts of travel time variability are used, which differ in their assumptions on information availability to drivers. The first measure is based on the assumption that, for a given road link and given time of day, the expected travel time is constant across all working days (rough information: RI). In the second case, expected travel times are assumed to reflect day-specific factors such as weather conditions or weekdays (fine information: FI). For both definitions of variability, we find that the mean travel time is a good predictor. On average, longer delays are associated with higher variability. However, the derivative of variability with respect to delays is decreasing in delays. It can be shown that this result relates to differences in the relative shares of observed traffic ‘regimes’ (free-flow, congested, hyper-congested) in the mean delay. For most CBAs, no information on the relative shares of the traffic regimes is available. A non-linear model based on mean travel times can then be used as an approximation.  相似文献   
69.
Urban arterial performance evaluation has been broadly studied, with the major focus on average travel time estimation. However, in view of the stochastic nature of interrupted flow, the ability to capture the characteristics of travel time variability has become a critical step in determining arterial level of service (LOS). This article first presents a stochastic approach that integrates classic cumulative curves and probability theories in order to investigate delay variability at signalized intersections, as a dominant part of the link travel time variability. This serves as a basis for arterial travel time estimation, which can be obtained through a convolution of individual link travel time distributions. The proposed approach is then applied in the estimation of travel time along one arterial in Shanghai, China, with abundant automatic vehicle identification (AVI) data sources. The travel time variability is evaluated thoroughly at 30-min intervals, with promising results achieved in comparison to the field measurements. In addition, the estimated travel time distributions are utilized to illustrate the probability of multiple LOS ranges, namely, reliability LOS. The results provide insights into how we might achieve a more reliable and informative understanding of arterial performance.  相似文献   
70.
ABSTRACT

In this article, we propose a new model called subjective-utility travel time budget (SU-TTB) model to capture travelers' risk-averse route choices. In the travel time budget (TTB) and mean-excess travel time (METT) model, a predefined confidence level is needed to capture the risk-aversion in route choice. Due to the day-to-day route travel time variations, the exact confidence level is hard to be predicted. With the SU-TTB model, we assume travelers' confidence level belongs to an interval that they may comply with in the route choice. The two main components of SU-TTB are the utility function and the TTB model. We can show that the SU-TTB can be reduced to the TTB and METT model with proper utility function for the confidence levels. We can also prove its equivalence with our recently proposed nonlinear-expectation route travel time (NERTT) model in some cases and give some new interpretation on the NERTT with this equivalence. Finally, we formulate the SU-TTB model as a variational inequality (VI) problem to model the risk-averse user equilibrium (RAUE), termed as generalized RAUE (GRAUE). The GRAUE is solved via a heuristic gradient projection algorithm, and the model and solution algorithm are demonstrated with the Braess's traffic network and the Nguyen and Dupuis's traffic network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号