首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
综合类   3篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
In this paper, single, two-position, two-way proportional valve is used to carry out the positon control of asymmetrical hydraulic cylinder with two chambers connected. The system structure and the working princle are introduced. The dynamic model of the asymmetrical hydraulic cylinder system is established with power bond graphs method, and becomes a fundament for analyzing the system. Sliding mode controller is designed, and the stability of the control system is analyzed. The simulation results indicate that the sliding mode controller designed can actualize the position control of asymmetrical hydraulic cylinder system, and controller is superior to traditional PID controller when the load changes in some range.  相似文献   
2.
A single on/off valve is used to carry out the position control of the asymmetrical hydraulic cylinder. The influence of the nominal flow rate on the positional accuracy of piston is investigated and the proximate formula for calculating the nominal flow rate of on/off valve is introduced. The system structure proposed in this paper could avoid cavitation and hyper pressure in two chambers to some extent. The simulation results indicated that the control method in this paper could satisfy the expected control requirements.  相似文献   
3.
The energy balance, air internal energy, enthalpy and exergy transfers of high pressure switching expansion reduction (SER) are comparatively analyzed in this paper to give a better understanding about the exergy analysis and its difference between energy conversion analyses for the pneumatics. In SER, the exergy transfer efficiency is much lower than the enthalpy efficiency. The enthalpy efficiency is primarily related to the initial pressure of supply tanks, and the exergy efficiency is primarily related to the pressure reduction ratios. Heat transfers increase the internal energy, enthalpy and exergy of air; the influence on exergy is relatively small. The total enthalpy in SER decreases as the air temperature decreases in the expansion process of the air. And exergy loss is primarily related to the irreversible process of isenthalpic throttling but not energy conversion. Based on the analyses, to improve the exergy efficiency of the pneumatics, the pressure reduction without power output should be avoided.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号