首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
为优化平地机前桥复合运动空间结构设计,分析前桥结构及各部件运动副关系,抽象出前桥机构模型。采用CATIA的数字样机(Digital Mock-Up,DMU)模块建立平地机前桥运动学模型,通过对模型施加符合运动方式的运动副和驱动命令实现运动学仿真,获取内、外侧车轮转向角度关系及前桥复合运动时转向油缸参数变化关系,为前桥油缸参数确定提供基础。同时创建前桥轮胎等关键部件的包络体,并进行动态间隙分析,为前桥与中松附具等空间结构设计提供参考和依据。  相似文献   

2.
为提高轮轨滑动接触热响应分析的准确性,基于Johnson-Cook材料模型,充分考虑含摩擦因数在内多种材料属性的温度相关性、3种热传递方式和轮轨实际廓形,建立了全比例三维弹塑性轮轨滑动接触有限元模型,采用完全耦合法对滑动接触状态下的轮轨进行热机耦合分析;研究了车轮以1 m·s-1速度沿钢轨滑行0.1 s时的轮轨温度场和应力场分布特性,分析了轴重、相对滑动速度对轮轨接触区温度场的影响,得到了热影响层深度、热影响层宽度、轮轨表层温度随轴重、相对滑动速度的变化关系。分析结果表明:轮轨最大等效应力发生在次表层接触斑中心处,车轮表层最高温度发生在接触斑后半部分中心处,车轮表层最高温度为848 ℃,钢轨表层最高温度为768 ℃,钢轨表层最高温度低于车轮表层最高温度;轮轨热影响层很薄,车轮热影响层深度约为4.22 mm,钢轨热影响层深度约为3 mm;轮轨热影响层深度随轴重增大无明显变化,而宽度随轴重的增大而增大,轮轨热影响层深度随相对滑动速度的增大而减小,而宽度随相对滑动速度增大无明显变化,轮轨表层温度随轴重和相对滑动速度的增大而增大,且相对滑动速度对轮轨热响应影响更大。全比例三维弹塑性轮轨滑动接触有限元模型及热机完全耦合法能够更加准确地预测轮轨滑动接触热响应,对合理开展轮轨热损伤和热疲劳研究具有重要意义。   相似文献   

3.
通过典型实例从四个方面详细地分析了总反力对摩擦圆的相切方向与机构输出力(力矩)之间的关系,提出了一个简捷有效的总反力相切方向判定法测:总反力对摩擦圆的相切方向一定在使机构输出力矩最小或与机构速度夹角最大的方向上。  相似文献   

4.
通过典型实例从四个方面详细地分析了总反力对摩擦圆的相切方向与机构输出力(力矩)之间的关系,提出了一个简捷有效的总反力相切方向判定法测:总反力对摩擦圆的相切方向一定在使机构输出力矩最小或与机构输出速度夹角最大的方向上.  相似文献   

5.
针对东风某重型商用车在使用中存在的轮胎异常磨损问题,利用Adams/View对该样车双轴转向机构进行参数化建模与运动学仿真,仿真结果表明:各车轮实际转角关系与阿克曼理论转角关系存在一定误差,其中第二轴两车轮转角误差较大,导致该轴轮胎磨损严重。利用多学科优化软件Isight集成Adams/View建立了转向机构运动学仿真优化分析流程,采用正交数组DOE分析法和NCGA遗传算法实现了该转向机构的多目标优化。优化结果表明:优化后各车轮转角误差大大减小,有效解决了车轮异常磨损问题。  相似文献   

6.
为揭示高速列车车轮踏面非圆磨耗的产生机理,控制高速列车车轮的非圆磨耗,基于高速列车在雨、雪条件下调速制动可能发生轮轨滑动的特点,建立了由轮对和钢轨组成的轮轨系统摩擦自激振动模型,使用该模型对轮轨系统进行了摩擦自激振动发生趋势的仿真分析.仿真结果表明,在轮对调速制动轮轨蠕滑力达到饱和(即滑动)状态下,轮轨系统容易发生摩擦自激振动,此摩擦自激振动能引起车轮非圆磨耗,并提出控制高速列车调速制动时的制动摩擦力使轮轨不发生滑动是抑制车轮非圆磨耗的主要措施,增大钢轨扣件垂向阻尼是控制高速列车车轮非圆磨耗的可行方法.   相似文献   

7.
韩媛 《黑龙江交通科技》2010,33(12):108-108,110
本文主要运用ADAMAS仿真分析软件,分别通过对车轮施加侧向力、纵向力、垂向力,以及轮跳,研究车轮定位参数的变化情况,进而对该轿车的前悬架系统进行动力学和运动学分析。  相似文献   

8.
独立车轮转向架车辆曲线通过性能分析   总被引:2,自引:1,他引:2  
系统地分析了独立车轮转向架车辆的曲线通过性能,着重对独立车轮和传统轮对的磨耗状况进行了比较.研究表明:独立车轮转向架车辆具有良好的曲线通过性能,能以15km/h的速度通过半径为50m的曲线;且与传统轮对相比磨耗水平较低,适合在城市轻轨低地板车中采用。  相似文献   

9.
针对日益突出的车轮高阶多边形磨耗问题,基于轮轨系统转子动力学模型、轮轨接触模型和车轮圆周磨耗深度模型,建立车轮多边形磨耗发生与演化模型;分析列车运行速度和车轮质量偏心的变化,揭示车轮多边形磨耗发生与演化的规律,并进行现场跟踪实测数据验证;通过模态和灵敏度分析研究系统参数对多边形磨耗的影响.研究结果表明:车轮高阶多边形磨耗的产生和演化遵循“定频整分”规律,即580 Hz左右的固定频率整分轮对转频时,车轮磨耗会演化成19阶左右的多边形,否则车轮磨耗将趋于均匀;该固定频率主要来源于轮对的2阶弯曲模态,且对车轴直径的灵敏度最大,通过定转速运行、增大车轴直径等措施改变固定频率可有效抑制车轮多边形磨耗.  相似文献   

10.
为了准确估计汽车的横向速度,利用七自由度汽车动力学模型、汽车运动学方程和Duoff非线性轮胎模型,建立包含噪声统计特性的汽车离散化动力学和运动学方程,提出2种方程联合的汽车状态联合估计算法。基于球面单形径向容积卡尔曼滤波(spherical simplex-radial cubature kalman filter,SSRCKF)和汽车动力学方程估计汽车的纵向速度和横向速度,以该纵向速度为量测输入,用容积卡尔曼滤波(cubature kalman filter,CKF)和运动学方程更精确地估计汽车的横向速度。利用CarSim及MATLAB/Simulink建立估计算法模型,并验证联合估计算法的有效性。该联合估计算法在双移线工况中横向速度的估计精度较SSRCKF提高了4.73%。  相似文献   

11.
以某款弹性车轮及其原型普通车轮为研究对象,在考虑车轮旋转带来的移动荷载效应和陀螺效应的前提下,应用2.5维结构有限元法和2.5维声学边界元法预测车轮在给定轮轨粗糙度激励下的振动和声辐射;针对40、80和120 km·h-1三个运行速度,分析了弹性车轮的降噪机理,研究了弹性车轮橡胶层的材料参数对弹性车轮降噪效果的影响。研究结果表明:车轮旋转使得原本非0节径模态频率处的声功率峰值分叉为2个峰值,其中一个峰值频率比原模态频率高,另一个峰值频率比原模态频率低,2个峰值频率差近似等于车轮的旋转频率乘以2倍的模态节径数;在所考虑的工况下,车轮旋转对车轮声辐射的影响最高达3.2 dB(A),因此,在预测车轮的声辐射时,必须考虑旋转对预测结果的影响;如果橡胶弹性模量太小,则轮箍容易振动,从而有可能辐射比普通车轮更高的噪声;从车轮声辐射的角度,橡胶弹性模量存在一个最佳值,在这个值下,弹性车轮的声功率最低,且低于原型车轮的声功率10 dB(A)以上;增加橡胶阻尼总是有利于车轮噪声的控制,但增加阻尼产生的降噪效果随橡胶弹性模量的增大而降低;对于同一弹性车轮,随着运行速度的提升,相对原型普通车轮的降噪效果不断降低,速度从40 km·h-1增大到120 km·h-1,降噪效果降低达4 dB(A)以上。   相似文献   

12.
为了分析LMA车轮型面位置偏移对车辆动力学性能的影响,设计不同型面位置偏移量的车轮,通过轮轨接触分析和车辆动力学计算,分析了车轮型面位置偏移对轮轨几何接触特性、车辆临界速度和曲线通过性能的影响.结果表明,较小的偏移量对临界速度影响不大,当偏移量达到1.75 mm后临界速度急剧下降.以均衡速度通过曲线时,型面偏移量的增大对轮轨横向力的影响不大,但会使轮对横移量的最大值显著增大.与反相偏移相比,同相偏移对车辆在直线上的临界速度及曲线上的横移量影响更大.因此,车轮型面位置偏移对车辆动力学性能有较大影响,应当避免发生,LMA车轮型面偏移量最大不得超过1.75 mm.  相似文献   

13.
利用动量定理,分别计算楔角较小(楔角小于0.4°)和楔角较大两种情况下滑水速度值.以小轿车、中型汽军和载重车为例分析车轮内压、水膜厚度与滑水速度的关系.结果表明:不论楔角较小或者较大,滑水速度与车轮内压成正比;楔角较大且车轮内压一定时,滑水速度与水膜厚度成反比.通过NASA滑水速度方程,对理论计算的滑水速度值进行验证,...  相似文献   

14.
货运调车场减速顶噪声的特征探讨   总被引:1,自引:0,他引:1  
通过对昆明东站铁路降噪工程的观测和试验,探讨了减速顶噪声的特性.减速顶噪声主要来源于轮对的垂向激励/垂向响应、垂向激励/横向响应.减速顶的噪声是一种持续时间、多个脉心中、离散频率的噪声.  相似文献   

15.
对处能源减速器称重过程的动态性能进行机理研究,建立了称重过程的数学模型,并进行了仿真计算,仿真结果与实测吻合。在此基础上了溜放速度,容腔及管路内油液的可压缩性对称重结果的影响。首次提出了“完全称重”、“部分称重”、“重复称重”的概念,为减速顶的设计提供新的理论依据。  相似文献   

16.
车轮失圆问题广泛存在于我国高速列车,对列车乘坐舒适性和运行安全性有显著影响.从2011年至2020年,测试了12条高铁线路中9种型号高速动车组的车轮不圆度,包括200、250、300、350 km/h 4种运营速度,共3.05万个车轮;对车轮不圆度测试数据进行特征分析,掌握我国高速动车组车轮多边形磨耗的发展规律;分析影响车轮多边形发展的关键因素,包括车辆轴距、轨道结构和研磨子修形.结果表明:高速动车组车轮存在10~30阶多边形磨耗,多边形波长为90~288 mm,且在100~178 mm波长范围的多边形磨耗最为严重;车辆轴距、扣件类型和环境温度与车轮多边形磨耗形成密切相关,通过改善研磨子和车轮踏面匹配关系,保证踏面横向和圆周处于良好的磨耗状态,使高阶车轮多边形粗糙度水平最大下降60%.  相似文献   

17.
建立了56自由度车辆动力学模型和车轮扁疤模型,计算了车辆的动态响应,采用HHT时频分析方法研究了扁疤冲击引起的轴箱振动的HHT谱特征,对比了车轮扁疤和车轮不圆的HHT谱特征之间的差异,并分析了车辆运行速度和轨道激励对扁疤冲击振动的HHT谱的影响。分析结果表明:健康车轮轴箱加速度的HHT谱呈现均匀分布,带有扁疤车轮的轴箱加速度的HHT谱呈现纵向条带分布,条带间隔与车速成反比,车轮不圆的轴箱加速度呈现横向条带分布,故根据轴箱加速度的HHT谱特征可以识别扁疤车轮。在京津线、国内既有线和美国三级谱上,最低可辨识频率分别为30、50、80Hz。车辆运行速度在150km.h-1以下时辨识频段取为40~100Hz,车辆运行速度在150km.h-1以上时辨识频段应加宽至200Hz。  相似文献   

18.
基于半赫兹接触的车轮磨耗计算   总被引:3,自引:1,他引:2  
为了分析轮轨接触模型对车轮磨耗计算的影响,基于半赫兹接触、赫兹接触和Kalker完全理论程序CONTACT分别计算轮轨接触应力和接触斑形状,并在Kalker简化理论基础上求解半赫兹接触的蠕滑力;基于Archard磨耗模型,计算车轮磨耗深度在踏面上的分布.计算结果表明:由于半赫兹接触考虑了接触斑内曲率的变化,则接触斑形状和最大接触应力比赫兹接触更接近于CONTACT计算结果;在大自旋蠕滑工况下,应用半赫兹接触得到的横向蠕滑力与CONTACT计算结果有较大偏差,其余工况相差不超过18%;基于半赫兹接触的FASTSIM计算时间约为基于赫兹接触的6倍,是CONTACT计算时间的1/166;半赫兹接触时,考虑弹性滑动速度的车轮磨耗深度更接近于CONTACT计算结果.  相似文献   

19.
介绍该站在安装减速顶调速系统以后.通过建立起的一整套的规章制度,并严格按照这些规章制度执行检查。在制定制度的基础上,严格落实.并同时根据现场实际创造出了多种方法保证了减速顶设备的质量,充分发挥了设备的优越功能。为确保车站安全生产做出了贡献。  相似文献   

20.
基于响应面法的双前桥转向机构参数优化   总被引:2,自引:2,他引:0  
针对某重型双前桥转向汽车轮胎磨损严重的问题,运用Adams/View建立了该型汽车双前桥转向机构的运动学模型,对其进行了运动学及转向性能仿真分析。针对第二桥车轮实际转角与理想转角之间差异较大的问题,采用灵敏度分析的方法,找出对转角差异影响较大的因子,在Adams/Insight中,使用响应面分析方法,对双前桥转向机构的参数进行了优化。对比优化前后的转角差异可知,实际转角与理想转角之间的差异得到了有效控制,从而降低了轮胎的磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号