首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 687 毫秒
1.
针对大系统仿真分析方法与试验结果出现偏差问题,基于实际线路测试数据,以车体子系统为仿真对象,辅助于模拟台架的试验数据,建立了26个自由度的多体仿真模型,实现了车体线路动态响应的仿真计算. 结果表明:摇枕垂、横向加速度响应结果仿真与试验RMS (root mean square)误差最大值为9%. 在1.5~15.0 Hz主要频率段,车体枕梁垂、横向振动加速度的试验结果和仿真结果的RMS误差低于8.57%,车体关键焊缝仿真与试验的动应力响应波形基本一致. 通过与试验结果的对比验证,仿真结果基本反映了车体在实际线路运行时的动态响应情况.   相似文献   

2.
不同车型高速综合检测列车的动力学传递特性不同,使得其对同一线路的车体加速度评价结果存在一定差异.为解决上述问题,本文基于多列动检车的检测数据,将卷积神经网络(convolutional neural network,CNN)与门控循环单元(gated recurrent unit,GRU)相结合,建立了多车型车辆动力学响应预测模型,通过输入多项实测轨道不平顺和车速预测各车型的车体垂向和横向加速度,并将多车型车体加速度预测值的最大包络作为轨道状态评价依据.结果表明:将高低、轨向不平顺等8项轨道不平顺和车速共同作为输入参数的模型预测性能最优,车体垂向和横向加速度预测的评估指标分别提升了5%~13%和25%~36%;CNN-GRU模型所预测的车体加速度在时域和频域均与实测结果吻合较好,相关系数最大达到0.902;且相比于BP (back propagation)神经网络,各项车体垂向和横向加速度预测的评估指标分别提升了36%~109%和11%~167%;针对某轨道几何状态不良区段应用效果,预测6种车型中有4种车型达到车体垂向加速度Ⅰ级或Ⅱ级超限,有1种车型达到车体横向加速度Ⅰ级超限,提高了轨...  相似文献   

3.
高速铁路路基不均匀沉降直接影响列车的动力特性.本文建立了车辆轨道路基空间耦合动力学模型,对沉降区车体振动、轮轨力、钢轨加速度和轨道板加速度等动力特性进行了分析.在车辆动力响应和轨道动力响应中,车体垂向振动加速度受路基不均匀沉降影响最为明显,且最有规律可循.将车体垂向振动加速度作为输入量,基于RBF神经网络对路基不均匀沉降的弦长和幅值进行识别,通过网络逼近性能和输出结果的训练不断优化神经网络模型,最后可得预测效果误差小于2%,可用于路基不均匀沉降的识别.  相似文献   

4.
基于耦合动力学理论,利用有限元方法建立了车辆-轨道耦合系统振动分析模型,输入不同截止波长的不平顺数据进行动力仿真计算,以确定轨道不平顺管理波长范围.高低不平顺主要影响车体的沉浮和点头运动,引起车体垂向加速度增大;轨向不平顺主要影响车体的侧滚和摇头,引起车体横向振动加速度增大.长波不平顺的影响主要体现在车体振动上,因此本文选定车体加速度作为确定不利波长的判定指标,对提速线路200km/h和250km/h速度下轨道不平顺波长管理的范围进行了探讨,并提出了提速线路轨道不平顺波长管理的建议.  相似文献   

5.
钢轨轧制不平顺激扰下的动车组动力响应特性   总被引:1,自引:1,他引:0       下载免费PDF全文
以某有砟客运专线中出现波长为3.2 m的轨道周期性高低不平顺、继而引起“抖车”现象的线路区段为对象,基于同步压缩小波变换提取了轨道几何动、静态检测数据在大机捣固前后的时频分布特征,并结合钢轨轧制流程的梳理分析,明确了轨道周期性高低不平顺的成因,即可能由钢轨轧制过程中复合矫直工艺不良引起. 在此基础上,探究了钢轨轧制不平顺与车辆各部件振动加速度以及轮轨接触力的关联关系,获取了钢轨轧制不平顺对车辆动力响应的影响规律. 结果表明:轧制不平顺使得轴箱、转向架、车体垂向加速度的相干函数分别达到0.97、0.96和0.76,较正常区段分别增长了5%、25%和300%;轮轨垂向力相干函数增长42%,达到0.94,说明轧制不平顺与车辆各部件的振动响应和轮轨接触力密切相关;轧制不平顺将轴箱和车体垂向加速度均方根(root mean square,RMS)值分别放大1.00 m/s2和0.05 m/s2左右;轧制不平顺与轴箱垂向加速度和轮轨垂向力RMS值线性相关性最强,相关系数分别达到0.9和0.8.   相似文献   

6.
提出一种基于多轴惯性传感器的方向盘转角检测系统,实现无线外置式、全范围转角实时检测。通过将三轴加速度分量在Roll-Pitch模型中进行姿态解析,并利用三轴角速度数据对解析角度进行互补滤波以改善高频特性,设计归零补偿和全角补偿算法,系统能够获取以0°为初始角度,±720°绝对位置的方向盘全角数据。方向转角检测结果通过蓝牙模块无线传输至PC或智能终端。对比实验结果表明:该系统检测的方向盘转角与真值呈现良好的线性相关。实车测试结果表明:本系统可实现对常见的驾驶行为的实车、实时辅助判别。  相似文献   

7.
基于机器视觉技术,利用OpenCV计算机视觉开源库作为开发函数库,以工业相机和三轴雕刻机作为实验平台,为数控系统进行视觉矫正系统开发.首先对装夹后PCB板采集Mark点,直线检测完成后,利用角点检测对Mark点进行定位.通过霍夫变换得到世界坐标系下的直线方程,以此求取当前待加工PCB板的装夹位置和姿态.最后通过图像坐标和机械坐标的变换关系对加工位置信息进行纠偏处理.针对数控系统PCB板加工中出现的装夹误差问题,设计并开发了基于机器视觉技术的数控系统视觉矫正系统.通过实验和具体误差数据证明了本系统达到了PCB板的加工精度要求.  相似文献   

8.
为了准确分析轨道车辆在较宽频域范围内的振动特性及传递规律,提出了一种基于弹性车辆系统动力学仿真模型的工况传递路径分析(OTPA)方法;建立了包含柔性轮对、构架和车体的弹性车辆系统动力学模型和与之结构参数完全相同的刚体模型,从时域的角度研究了轮对、构架和车体的振动特性,并将仿真结果与实测数据进行了对比,探究了弹性处理方式对车辆振动的影响,得出了振动能量的衰减规律;从频域的角度研究了在实测钢轨垂向不平顺的激励下,弹性车辆系统的振动特性;运用OTPA方法仿真分析了钢轨垂向不平顺结合车轮多边形的复杂工况下,车辆系统从轮对到构架至车体这一自下而上的振动传递过程当中垂向振动的主要传递路径。研究结果表明:车辆系统的弹性处理方式对整车振动有重要影响,弹性模型的轮对、构架和车体的振动加速度相比于刚体模型在中低频范围内更接近实测值,轴箱、构架和车体的最大振动幅值分别为250~450、30~40、3~4 m·s-2,由轮对至构架到车体,振动幅值呈一个数量级衰减;弹性模型的平稳性指标大于刚体模型,并且速度越大趋势越明显,车辆的弹性振动对运行性能的影响随着速度的提高而增大;车辆系统在复杂工...  相似文献   

9.
磁浮列车静悬浮车轨耦合振动对比分析   总被引:1,自引:1,他引:0  
为研究二系悬挂中置与端置的两种三悬浮架低速磁浮列车的车轨耦合振动特性,依据牛顿第二定律建立了其垂向车轨耦合动力学模型. 首先通过动力学方程分别分析了两种磁浮列车车体和悬浮架之间的耦合关系,然后研究了两种磁浮列车悬浮架均存在0.09° 的初始角位移时的动力学特性,最后研究了两种磁浮列车中二系悬挂对悬浮架作功的差异. 研究结果表明:与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,车体与悬浮架之间的耦合关系更少;当两种磁浮列车悬浮架均存在0.09° 的初始角位移时,采用二系悬挂中置的磁浮列车与采用二系悬挂端置的磁浮列车相比,前者具有更小的车体位移、车体垂向振动加速度、轨道梁振动位移和悬浮间隙波动;以上4个参数前者最大值分别为0.005 mm、0.004 m/s2、0.004 mm和0.005 mm;而后者最大值分别为0.023 mm、0.02 m/s2、0.021 mm和0.02 mm;与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,其二系空气弹簧对悬浮架作功更小,仅为前者的50%.   相似文献   

10.
基于某国外出口的不锈钢车体结构,采用壳单元及实体单元建立不锈钢车体结构有限元模型,应用梁单元模拟点焊、激光焊焊缝,运用ANSYS软件进行强度分析,依据美国ASME-RT-2:2014标准加载边界条件,输出测点的坐标、位移及应力信息,与车体样件试验结果做对比分析,并基于车体垂向工况对车体结构进行对比分析,结果表明:车体结构测点的计算数值与测试值的整体变化趋势一致,刚度、强度结果满足要求,验证了模拟方法的可靠性,对利用率超过25%,误差超过30%的测点进行了解释说明,最终满足技术要求.  相似文献   

11.
为改善高速列车运行舒适度和车下悬挂设备的振动水平,建立了车辆-设备系统垂向动力学模型,推导了车辆系统振动加速度频率响应函数;结合轨道不平顺激励谱函数计算了车下悬挂设备振动加速度均方根,联合人体舒适度加权滤波函数计算了车体振动参考点的垂向舒适度指标;引入目标级联分析(ATC)法逐层分解车辆-设备系统振动指标,构建了车辆-设备系统两层指标分解数学模型,采用指数罚函数策略协调两层振动指标之间的耦合问题;提出了以车辆运行舒适度和车下悬挂设备振动加速度为指标的多目标优化方法,建立了以车下设备悬挂刚度和阻尼为设计变量的优化模型;联合车下设备悬挂参数动力吸振器(DVA)设计法对比探讨了ATC法在复杂车辆系统参数优化设计中的应用效果。分析结果表明:与DVA设计法相比,ATC法优化后车辆中部舒适度在300 km·h-1工况下提高了8.5%,设备振动水平减小了约20%;在全速域区间,ATC法对车体中部的振动衰减是DVA设计法的2倍,且对设备的振动衰减比DVA设计法大4.5 dB;与优化前相比,ATC法优化后车辆中部舒适度指标最大提升了15%,设备振动加速度减小了0.18 m·s-2。由此可见,ATC法可以运用于复杂轨道车辆结构参数优化设计中,能有效改善车辆系统的振动水平,也可为车下设备悬挂参数优化设计提供指导。   相似文献   

12.
对具有输入时滞的二轮自平衡车系统, 设计了一种自适应滑模控制算法; 采用拉格朗日函数建立二轮自平衡车系统的动力学数学模型, 并在系统模型中考虑实际中存在输入时滞, 以及在处理输入时滞时所引入的未知扰动; 对变换后的输入矩阵做奇异值分解, 进一步设计了对扰动参数具有自适应估计能力的自适应滑模控制器; 基于Lyapunov稳定性理论, 保证了闭环系统鲁棒渐近稳定; 试验采用陀螺仪MPU-6050以及加速度传感器构成小车姿态检测装置。分析结果表明: 当控制参数较小时, 系统的超调量较小, 然而系统的调节时间较长; 当控制参数较大时, 系统产生了较明显的超调量, 然而系统的调节时间缩短了; 当外加扰动较小时, 车体速度变化小于0.08 m·s-1, 倾角角速度变化小于0.6°·s-1; 当外加扰动较大时, 车体速度变化小于0.10 m·s-1, 倾角角速度变化小于0.8°·s-1; 初始倾角为5°时, 车体速度保持在0.005 m·s-1范围内, 倾角角速度保持在0.022°·s-1范围内; 初始倾角为10°时, 车体速度保持在0.007 m·s-1范围内, 倾角角速度保持在0.031°·s-1范围内。可见, 自适应滑模控制算法能在引入适量干扰和不同初始车体倾角的情况下, 使小车自主调整并迅速恢复稳定状态。   相似文献   

13.
为了减小高速动车组车体刚性与弹性振动, 提出了一种基于二系垂向作动器与车体压电作动器的高速动车组车体振动主动控制方法; 基于某型高速动车组, 设计了一种在车辆二系安装垂向作动器, 在车体底架布置压电作动器, 运用H鲁棒最优控制器进行车辆协调控制的主动减振方法; 建立了基于车辆动力学参数的刚柔耦合减振力学模型, 采用H2及H准则优化压电作动器与压电传感器布置位置, 运用鲁棒最优控制方法设计了H反馈控制器; 利用MATLAB仿真了减振装置与主动控制方法对车辆动力学性能的影响, 比较了被动悬挂车辆、仅安装二系垂向作动器车辆与采用主动控制车辆的动力学性能差异。研究结果表明: 压电作动器与压电传感器布置在距车体左端距离为7.15、12.25、17.35m处车体一阶及二阶弹性模态归一化H2及H范数最大, 可以作为压电作动器与传感器的布置位置; 基于二系垂向作动器与车体压电作动器的鲁棒最优控制方法能够有效地抑制车体的振动, 一阶垂弯振动频率处车体中部和转向架上方的加速度功率谱分别减小为被动悬挂车辆的5%、10%;速度越大, 振动加速度抑制效果越明显, 当车辆的运行速度为200km·h-1时, 车体振动加速度均方根减小10%, 当车辆的运行速度为350km·h-1时, 车体振动加速度均方根减小18%;相对于被动悬挂, 二系垂向作动器输出力功率谱在车体浮沉与点头振动频率处的量级为106 N2·Hz-1, 对车体刚性振动有较大抑制作用, 压电作动器电压功率谱在车体一阶垂弯振动频率处达到峰值4 000V2·Hz-1, 对车体弹性振动有较大抑制作用。   相似文献   

14.
为准确求解曲线轨道上重载货车悬挂的相对位移,首先,建立曲线轨道数学模型,推导出曲线外轨超高、顺坡角、侧滚角和中心角随线路长度的变化公式,再根据车辆各刚体部件进出曲线的时间和所处曲线位置差异,编程计算悬挂点刚体间的超高及转角差;其次,以刚体质心为坐标原点建立本体坐标系,分别给出悬挂点在两刚体本体坐标系中的坐标表达式,通过坐标变换法将本体坐标转换到同一坐标系下,计算悬挂点瞬态相对位移;最后,结合车辆曲线动力学仿真程序计算,即可求出车辆曲线通过时各悬挂点的动态相对位移. 计算结果表明:车辆悬挂相对位移是车辆参数和曲线轨道参数综合作用的结果,当单独不计线路侧滚角差、顺坡角差、中心角差时,对应悬挂相对位移的最大偏差率可达42.85%、24.03%、71.42%;利用坐标变换结合动力学仿真计算的方法可全面考虑车辆和轨道参数,求解车辆悬挂相对位移更为准确.   相似文献   

15.
结合某大跨悬索桥所在山区地形,研究了漏斗型峡谷这一特殊构造地形的桥址区平均风特性,为大跨度桥梁在漏斗型峡谷地区的抗风设计提供依据.首先,建立实际地形的数值模型,并利用Fluent软件对24个不同来流工况进行比较分析;然后,将整体模拟结果与实测结果进行对比,验证数值模拟的合理性;最后,通过模拟结果的对比分析,探讨漏斗型峡谷桥位对风速大小、风攻角、风向角在不同来流方向的影响规律,分析平均风速随攻角分布的特点以及不同位置处的竖向风剖面特性.研究结果表明:漏斗型峡谷桥址区存在明显峡谷风加速效应;漏斗型地形对桥址区来流的攻角和风向分别表现为弱扰乱性和高导向性,来流攻角和风向分别稳定集中在-5°~0°和25°~30°;峡谷中风速对攻角变化的敏感性更高.  相似文献   

16.
为探究中低速磁浮车辆-桥梁耦合系统的振动特性,对其在上海临港中低速磁浮试验基地开展了现场动力学试验,研究了车速和桥梁结构形式对耦合系统动力响应的影响;试验车辆采用(悬挂)中置式悬浮架,试验桥梁为25 m混凝土简支梁和25 m钢结构简支梁;为明确2种桥梁的固有振动特性,对其进行了模态测试;提取了不同工况下车辆-桥梁耦合系...  相似文献   

17.
随着具有定位功能的各类便携式移动设备的普及,产生了大量的移动目标时空轨迹数据,庞大的数据规模对轨迹数据管理和分析带来了严峻的挑战.?车辆时空轨迹数据压缩算法,通过监测分析车辆在不同运动行为模式下智能手机内置线性加速度传感器和方向传感器的数据变化规律,识别车辆的转向行为和变速行为,并根据识别结果请求GPS传感器定位,记录...  相似文献   

18.
运用自编的车桥耦合程序,计算(竖向、横向以及纵向)3个方向的加速度,同时以ISO2631的行车振动舒适度为评价标准,选用泸州市某特大桥为工程背景,评价其在不同桥面平整度以及车速下的行车舒适性,并且以良好行车舒适性加速度为界限,对车辆过桥在不同桥面平整度下的速度进行分类,为车辆过桥的速度提供一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号