首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以高速铁路32 m混凝土简支箱型桥梁为研究对象,通过有限元软件建立了轨道-桥梁分析模型,采用车辆-轨道-桥梁耦合振动理论,分析了桥梁结构的竖向振动,并将得到的竖向振动响应作为边界条件,导入到箱梁边界元模型中预测箱梁结构噪声。同时基于面板声学贡献分析理论,进行了箱梁梁体的面板声压贡献分析和声功率贡献分析,确定箱梁梁体辐射噪声的最大部位。研究结果表明:列车以200 km/h的速度运行在高架轨道上时,箱梁梁体辐射噪声主要集中0-100 Hz范围内,其中在20 Hz和42 Hz左右有比较突出峰值。同时由面板声学贡献分析可知箱梁梁体主要辐射噪声的部位是箱梁的顶板和两侧翼缘板下面板。  相似文献   

2.
利用有限元法和现场试验对城市高架箱梁结构的振动特性进行分析,重点研究对桥梁结构辐射噪声具有重要影响的20~200 Hz箱梁振动特性和分布规律.研究结果表明:列车荷载作用下箱梁结构的振动主要集中于40~200 Hz频率范围内,影响箱梁振动的主要为波长0.075~0.375 m的轮轨短波不平顺.轮轨短波不平顺引起的箱梁振动...  相似文献   

3.
基于车-线-桥耦合振动和统计能量分析,提出铁路钢-混结合梁桥车致振动与结构噪声的理论计算方法。车-线-桥耦合振动分析中,采用有限元方法建立梁-板混合模型,计算桥面板的振动能量,代入并求解统计能量平衡方程,得到桥梁各子系统间的振动能量传递,根据桥梁各构件的振动响应计算桥梁辐射的结构噪声。通过对某三跨钢-混结合梁桥辐射噪声进行现场实测,验证了理论预测模型。分析结果表明:结合梁桥结构噪声主要位于20~1 000Hz频段,计算此类桥梁结构噪声时截止频率可以取1 000Hz;计算主跨跨中断面距近轨不超过25m场点的结构噪声时,可忽略邻跨的影响;全频段内下翼缘辐射噪声最小,315 Hz以上频段以腹板辐射噪声为主,315Hz以下频段以桥面板和钢梁腹板辐射噪声为主。  相似文献   

4.
为了探究桥梁结构的振动噪声,以24 m简支箱梁为研究对象进行车桥耦合动力分析,求解轨道不平顺作用下的竖向轮轨力。利用有限元与边界元结合方法,建立桥梁结构声场分析模型,此模型将竖向轮轨力作为激励,以桥梁结构的动力响应作为边界条件,分析噪声声压级的频率分布特性和传播规律。研究表明,桥梁结构噪声最大值位于列车加载位置附近,声波能量由桥梁结构向外部空间辐射,其频段主要在100 Hz以下,分布于桥梁结构正上方与正下方。桥梁结构噪声在传播过程中,其衰减性随着传播距离增大而逐渐增加;噪声声压随车辆速度增加而增大,随桥梁刚度和腹板厚度的增大而减小。  相似文献   

5.
研究目的:针对日益严重的桥梁结构低频噪声问题,本文建立钢轨、无砟轨道、桥梁结构的梁-板振动有限元预测模型,分析城市轨道交通单线U型梁在垂向轮轨力作用下20~200 Hz范围内频域的振动及其近场、远场的结构噪声特性,同时分析U型梁各板件的声贡献量。通过对U型梁进行振动噪声分析,提出截面优化建议。研究结论:(1)U型梁的振动幅值峰值出现在31.5~63 Hz左右,翼板的振动幅值最大,其次是底板和腹板;(2)由钢轨到U型梁的振动功率级损失在16.9~20 dB左右,U型梁各板件的振动功率级与其声压贡献量的规律基本一致,底板腹板翼板;(3)在近场点各板件的声压级峰值都在50 Hz,底板的声压级最大,其次是腹板和翼板;(4)远场噪声主要受底板的作用影响,其声压贡献量达到81%左右,因此应作为主要降噪对象,而翼板的振动峰值虽大,但对声场的影响很小,几乎可以忽略不计;(5)该研究成果可为城市轨道交通的桥梁采取减振降噪措施提供借鉴。  相似文献   

6.
轨道板声辐射特性   总被引:1,自引:0,他引:1  
板式轨道的噪声辐射比有砟轨道严重.为预测板式轨道的噪声辐射,根据虚功原理或者哈密尔顿原理建立轨道板的振动方程,并通过傅立叶变换得到轨道板在稳态荷载作用下的振动响应,然后用边界元法建立轨道板的声学边界元模型,以轨道板的振动响应作为边界条件计算轨道板的声辐射特性.研究结果表明:轨道板的声辐射效率与频率的关系具有随频率变化的复杂特性,呈非线性,不能用1个简单的解析表达式描述;轨道板的厚度对声辐射效率没有影响,对轨道板的声辐射功率低频段影响较大,高频段影响较小;轨道板面积对轨道板声辐射效率的影响较大,对轨道板声辐射功率的影响甚微;轨道板下橡胶垫板对轨道板的振动和声辐射在50 Hz以下及1(000 Hz以上频段时影响较大,在50~1 000 Hz频段影响较小;博格轨道板的声辐射效率和声辐射功率在30 Hz以下频段时,低于A型轨道板,其他频段均大于A型轨道板.  相似文献   

7.
研究目的:轨道不平顺引起的列车振动和轮轨相互作用力随着列车速度的提高成倍增大。对车辆-轨道-桥梁耦合振动而言,桥梁变形和轨道不平顺相互叠加形成轨面位移,因而轨道不平顺对系统动力响应的影响更加显著。本文针对轨道不平顺对客运专线高架轨道结构振动特性的影响进行研究,分析三种实测中长波轨道不平顺状态,即路基有砟轨道不平顺、桥上有砟轨道不平顺以及隧道无砟轨道不平顺对高架轨道结构振动响应产生的影响。研究结论:(1)在相同运营条件、相同养护条件下,不同轨道结构的不平顺状态对轮轨冲击作用力、钢轨振动加速度、轨道板振动加速度的影响不同,但对桥梁振动加速度的影响较小;(2)在客运专线轨道中长波不平顺激励下,钢轨振动频率主要分布在20~250 Hz范围内,轨道板、桥面板垂向振动频率分布在20~150 Hz范围内,轨面不平顺度的波长成分是影响轨道结构振动频率分布特性的一个主要因素;轮轨力、钢轨振动加速度、轨道板振动加速度受随机不平顺的短波长成分的影响显著;(3)除了轨道结构类型的影响,轨道不平顺功率谱大小与波长特性对轮轨力、钢轨振动加速度、轨道板振动加速度也产生了显著的影响,建议在进行轨道不平顺控制时将轨道不平顺谱纳入高速铁路客运专线轨道质量的评价指标当中;(4)本研究成果对加深认识我国高速铁路轨道不平顺对高架轨道结构振动特性的影响具有一定的理论意义和实用价值。  相似文献   

8.
北京地铁5号线高架结构的辐射噪声分析与实验研究   总被引:1,自引:0,他引:1  
在试验和分析噪声源特性的基础上,对由结构噪声和轮轨噪声引起的高架结构附近的噪声传播规律进行研究,应用声学理论建立列车通过高架桥梁时的噪声预测模型。在北京地铁5号线高架桥梁试验段进行的现场噪声测试结果表明:用模型计算出的声压值与实测值的误差基本控制在5%以内,模型较为真实地反映了轨道交通高架结构附近的声场分布;在高架桥梁任一竖直平面内,较强的噪声级主要集中在桥梁的中部;梯形轨枕轨道具有良好的减振降噪作用,在低频处的振动速度最大值可降低70%以上,结构辐射噪声最大可降低2.4 dB。  相似文献   

9.
运用车桥耦合动力理论并结合基于间接边界元法的噪声分析方法,对高速铁路32m简支槽形梁桥结构噪声的声辐射特性进行研究。结果表明:简支槽形梁的抗扭刚度小,抗扭性能弱;6.3 Hz以下频率的振动噪声主要由梁体的整体振动产生,6.3Hz以上频率的振动噪声主要由梁体构件的局部振动产生,振动噪声受构件的局部振动影响显著,声压级峰值频率为25 Hz;横桥向,随着距桥梁中线距离的增大,场点声压级逐渐变小,距离每增大5m声压级平均降低1.2~2.5dB;梁下区域距桥梁中线15m范围内,行车侧声场声压级大于非行车侧,10m处行车侧场点声压级平均大1.87dB,距桥梁中线25m范围以外,行车侧声场声压级小于非行车侧,30m处行车侧场点声压级平均小1.46dB;底板的声压贡献系数要比腹板和翼板大的多,远场声压主要受底板的影响;地面附近的噪声基本由底板产生;应当有针对性的采取措施改善结构的振动噪声性能。  相似文献   

10.
钢轨声辐射特性的数值计算方法   总被引:4,自引:0,他引:4  
魏伟  聂春戈 《铁道学报》2006,28(5):78-82
声辐射系数是轮轨噪声预测的重要参数,用边界元方法预测声辐射系数,并以钢轨为例,计算了垂向和横向声辐射系数。计算结果表明:625 Hz以下,钢轨的横向、垂向声辐射系数随频率呈线性变化;1000 Hz以下钢轨的横向声辐射系数强于垂向声辐射系数;1000 Hz以上垂向声辐射系数大于横向声辐射系数,垂向声辐射系数在1000 Hz以上有两个峰值,分别在2000 Hz和5000 Hz;在1500 Hz~3000 Hz范围内钢轨垂向声辐射系数较大,这个频率内以垂向振动对声的贡献最大,这也是钢轨噪声的主要贡献频率;在5000 Hz附近要弱于2000 Hz附近的声辐射系数。该方法能很好地预测结构的声辐射系数,较好地解决了振动与噪声之间的联系问题,为轮轨噪声预测开辟了一条途径。  相似文献   

11.
随着我国城市轨道交通的快速发展,高架轨道作为一种经济、实用、安全、快速的交通模式,在城市轨道交通建设中得到越来越广泛的运用,但由此带来的振动噪声对周围环境的影响也变得十分突出。通过建立轮轨噪声预测模型,运用有限元法分析箱型梁、U型梁阻抗,对高架轨道轮轨噪声进行预测分析。讨论了桥梁截面型式、行车速度、轨道扣件刚度、桥梁结构阻尼、桥梁支座刚度对高架轨道轮轨噪声的影响。分析结果表明,行车速度和扣件刚度对轮轨噪声有较大影响,在200 Hz以下,轮轨噪声总体上随着扣件刚度的增大而增大;在200~800 Hz范围内,轮轨噪声随着扣件刚度的增大反而减小;在800 Hz以上,扣件刚度对轮轨噪声无明显影响。桥梁截面型式仅在低频部分对轮轨噪声有较大影响,而桥梁结构阻尼、桥梁支座刚度则对高架轨道轮轨噪声影响甚微。  相似文献   

12.
基于某地铁高架线的简支箱型梁桥,建立轨道-桥梁振动传递特性分析模型,研究简支梁跨度、轨下刚度、桥上轨道结构形式以及箱型梁断面等因素对高架桥梁结构与噪声辐射相关的振动传递特性的影响。结果表明,简支梁跨度的变化不影响与噪声辐射相关的振动,而减振扣件可在90 Hz以上发挥减振降噪作用;加厚箱梁顶板和腹板能在一定程度上减小箱梁的振动和辐射噪声,用多腔室箱梁代替单箱室箱梁可显著减小振动及辐射噪声。分析结果可为城市轨道高架桥梁结构的设计和选择提供一定的理论参考依据。  相似文献   

13.
重载电力机车司机室声振特性分析   总被引:3,自引:2,他引:1  
基于一重载电力机车司机室的详细结构有限元模型,对其结构模态进行了计算和分析,应用声学有限元法对室内空腔声学模态、轮轨垂向随机激励下的室内声压、室内测试场点处6.3~200 Hz频率范围内的声压频率响应进行了仿真计算。结果表明:司机室结构的局部模态频率比较密集,且主要在80 Hz以下的低频段;现有司机室空腔声学模态的零声压节线在较大范围内使人耳处于声压幅值较小的区域;在运行速度100 km/h,轮轨垂向随机激励下,空腔声学模态的节线位置发生了稍许偏移;阻尼和吸声材料使室内100~200 Hz频段内的噪声特性有明显的改善。  相似文献   

14.
为了解高速铁路钢桥结构噪声辐射特性,基于车-线-桥空间耦合振动理论和统计能量分析原理,提出高速铁路钢桥结构噪声预测模型,对其辐射噪声空间分布规律和结构各部分声贡献量进行分析。该预测模型采用空间板梁混合有限元模型进行车-线-桥空间耦合振动分析,得到桥面板的振动速度时程,经FFT变换后得到频域内的结果,作为后续统计能量模型的输入。通过求解统计能量平衡方程,得到系统振动能量分布和传递结果,根据振动声辐射理论,求得桥梁结构噪声。对64m钢桁结合梁的分析结果表明:钢桥结构噪声波阵面为略显纺锤形的柱面波;纵、横梁和主桁为主要声源;纵、横梁和主桁的噪声峰值频段分别为1 000 Hz和630 Hz;随着至线路中心线的距离增加,近主桁辐射结构噪声衰减最快;近场噪声衰减速度比远场快。  相似文献   

15.
本文利用数值方法分析地铁车轮辐板安装刹车盘对其声辐射特性的影响。数值分析中,首先根据某新型地铁车轮的实际尺寸建立车轮的三维实体有限元模型,基于模态叠加法计算该车轮在不同激励下的动态响应。计算动态响应时考虑轮轨名义滚动圆处法向单位力、轮缘根部横向单位力和轮轨名义滚动圆处轮轨表面粗糙度等效力3种激励对地铁车轮振动特性的影响。利用有限元算得的车轮振动结果,生成声学网格速度边界条件,通过声学边界元法计算车轮的声辐射特征。分析结果表明,车轮声辐射主要来自车轮辐板轴向贡献,踏面径向贡献相比之下不显著。另外,刹车盘能起到对辐板声屏障的作用,从而衰减来自车轮辐板的噪声辐射。车轮辐板安装刹车盘后,在通过小半径曲线时,可以有效降低轮轨横向力作用下激发出的车轮轴向模态振动噪声,同时对车轮的直线滚动噪声也有一定的抑制作用。另外,刹车盘对车轮轴向辐射声场的指向性有较显著影响。  相似文献   

16.
通过仿真计算分析了两种轻型浮置板轨道系统的隔振性能、不同荷载作用位置对力传递率的影响及传递给基础的力。结果表明,在高于固有频率约1. 4倍时,两种浮置板轨道系统才有隔振效果,且两者隔振效果相差不大;力传递率在低于浮置板系统固有频率的低频段,载荷位置处在中间时较小,在边缘时稍大。普通轨道系统力传递率随离开荷载作用位置在振动频率100 Hz以上衰减很快,而两种浮置板随距离在振动频率10 Hz以上衰减较快。两种浮置板轨道系统在相同位移激励的轮轨力作用下传递给基础的力相差不大,并且在中高频具有良好的隔振性能。  相似文献   

17.
为研究扣件胶垫温变特性对车辆、轨道和桥梁的振动影响规律,以高速铁路WJ-7型扣件胶垫为研究对象,通过其动态力学性能试验得到不同温度下扣件的动参数,然后代入建立的车辆-轨道-桥梁耦合振动时域模型中进行分析.研究结果表明:扣件的动刚度和阻尼随温度降低而增大,低温时更为显著.从时域响应来看,当温度降低时,车体加速度和桥梁位移基本无影响,轮轨力、扣件力、轨道板加速度和桥梁加速度增大,钢轨的位移和加速度则减小.从频域响应来看,当温度降低时,轮轨力和扣件力在低频基本无变化,轮轨力主频向高频偏移且峰值增大,扣件力中高频峰值明显增大.钢轨在8~100 Hz范围内振动减弱,在125~315 Hz振动加剧,轨道板在80~400 Hz振动加剧,桥梁在80~250 Hz振动加剧.  相似文献   

18.
为研究扣件胶垫温变特性对车辆、轨道和桥梁的振动影响规律,以高速铁路WJ-7型扣件胶垫为研究对象,通过其动态力学性能试验得到不同温度下扣件的动参数,然后代入建立的车辆-轨道-桥梁耦合振动时域模型中进行分析.研究结果表明:扣件的动刚度和阻尼随温度降低而增大,低温时更为显著.从时域响应来看,当温度降低时,车体加速度和桥梁位移基本无影响,轮轨力、扣件力、轨道板加速度和桥梁加速度增大,钢轨的位移和加速度则减小.从频域响应来看,当温度降低时,轮轨力和扣件力在低频基本无变化,轮轨力主频向高频偏移且峰值增大,扣件力中高频峰值明显增大.钢轨在8~100 Hz范围内振动减弱,在125~315 Hz振动加剧,轨道板在80~400 Hz振动加剧,桥梁在80~250 Hz振动加剧.  相似文献   

19.
轨道交通高架桥梁振动阻抗及传递特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
列车荷载引发轨道结构及其下部桥梁结构振动,进而引发二次辐射噪声,其辐射噪声取决于桥梁的阻抗,一般桥梁阻抗越大,辐射噪声越小。就影响城市轨道高架桥梁二次辐射噪声的桥梁阻抗及振动传递函数进行建模和分析,讨论影响桥梁阻抗的因素,以期在今后的桥梁设计中考虑增大桥梁阻抗,从降低桥梁振动和减小辐射噪声的角度对桥梁设计进行优化。  相似文献   

20.
为降低轨道交通槽形梁在列车动荷载作用下辐射的低频噪声,以轨道交通30m简支槽形梁为研究对象,基于车桥耦合分析模型,利用有限元法和声传递向量法计算分析槽形梁辐射的结构噪声及其特性。利用中心组合试验设计方法,建立槽形梁结构低频噪声优化的响应面模型,利用序列二次算法求出槽形梁结构声学最优的截面尺寸。结果表明:槽形梁结构振动与噪声的峰值频率在63 Hz附近,其与轮轨耦合振动的峰值频率有关,当频率为63Hz时,槽形梁结构噪声的辐射范围最广,衰减最慢。槽形梁结构噪声辐射的主要区域为槽形梁的上部和下部,且槽形梁上部区域的结构噪声大于下部区域。优化后的槽形梁底板厚度为0.294m,腹板厚度为0.244m。优化后槽形梁声场场点的总声压级可降低3dB左右,且面声场的整体降噪效果也较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号