首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
针对传统人驾车(HV)和网联自动车(CAV)组成混合交通条件下的快速路道路缩减瓶颈问题,从群体控制角度,提出了一种新的速度协调控制策略(简称节流控制策略);基于瓶颈交通状态和Greenshields模型,设计了领航CAV速度控制器;面向CAV节流群体组群过程的控制问题,提出了目标切换下的非线性控制器;构建了CAV节流群体类队列控制器,实现了基于瓶颈交通状态的群体形态与群体速度动态调节,进而联合领航CAV速度控制方法,周期性管控超过每组节流群体的车辆;提出了CAV纵向安全控制器来解决组群和群体演化过程的车辆安全问题。仿真结果表明:在快速路瓶颈路段下,对比传统交通系统,提出的动态节流控制策略CAV渗透率达到5%,在车流量分别为2 000、3 000、5 000、6 000 veh·h-1条件下,可对应分别提高通行效率约5.87%、16.97%、11.07%、10.25%;在固定车流量为3 000或6 000 veh·h-1的快速路混合交通瓶颈路段中,对比传统交通系统,若CAV渗透率分别为10%、20%、30%,受控交通系统的通行效率可提升约24%;通过对车头间距分析,受控CAV在节流全过程中无碰撞事故发生,且可与前车保持9 m以上安全距离。可见,节流控制策略在应对快速路瓶颈问题是有效的。   相似文献   

2.
为精准识别不利天气下高速公路交织区的交通运行状态,在传统交通流指标上引入天气因素,建立改进的k-prototypes交通运行状态划分方法。本方法通过分析在不同等级的降雨、能见度、风速下交通流特性的变化特征,确定天气对交通流状态的影响;利用随机森林模型选择交织区各车道交通流运行状态的影响变量;为提高模型精度,引入信息熵衡量k-prototype算法的相异性,并提出聚类效果评价指标衡量状态的有效性。结果表明:考虑天气及交通流特征的高速公路交织区各车道运行状态划分为7类最佳,分别对应《道路通行能力手册》中的各级服务水平。在恶劣天气影响下,交织区各车道服务水平均下降明显,车道1、3平均下降4个等级,车道2、4平均下降3个等级;在中度天气影响下,各车道下降2~3个服务水平。在同一服务等级下车道1、3车流运行最小速度下降范围在11.2~17.4 km·h-1,而车道2、4在21.2~27.4 km·h-1。研究成果可为恶劣天气影响下更精细化的交通管理以及提高高速公路交织区服务水平提供理论基础。  相似文献   

3.
为探究智能网联自动驾驶车辆(Connected and Autonomous Vehicle, CAV)与人工驾驶车辆 (Human Driving Vehicle, HDV)混合行驶的多车道异质交通流运行特征,本文剖析了异质交通流中不同类型车辆的跟驰模式,提出不同类型车辆双车道及多车道换道模型,进而构建了多车道异质交通流仿真模型,并分析了不同CAV混入率下的道路通行能力及换道行为特征。研究结果表明,随着CAV渗透率的提高,单车道通行能力由1678 pcu·h-1提升至4200 pcu·h-1,交通流临界密 度由25 pcu·km-1增长至35 pcu·km-1 ,同一渗透率下不同车道数的道路通行能力及临界密度值呈现显著差异性。异质交通流换道行为呈现三阶段特征:在低密度下,不同类型车辆均可自由行驶及换道;密度在20~100 pcu·km-1 时,车辆换道频率呈“上凸”状,CAV渗透率越高,HDV凸形峰值越大,而CAV峰值较低;在高密度下,受可换道空间的约束,不同类型车辆均无法完成换道。此外,进一步讨论了不同CAV渗透率及密度条件下的异质交通流仿真效益,包括交通量提升及秩序改善特征等。研究成果有助于理解智能网联环境下多车道异质交通流运行状况,为未来异质交通流管理提供理论参考。  相似文献   

4.
为进一步提高混合交通环境下车辆的行车效率与交通流的稳定性,在考虑后视效应的基础上,融合多辆前车速度与加速度等状态信息,以指数平滑方式构建了网联自动驾驶车辆(CAV)跟驰模型;在此基础上,研究了前后方车辆数和状态信息完整度对模型稳定性的影响,结合Lyapunov第一方法和线性谐波微扰法进行了线性稳定性分析,并确定了模型最优参数;利用混合交通环境特性,在考虑通信信息丢失的情况下提出了CAV在不同位置和状态下的跟驰策略,并在该策略支撑下进行了不同CAV渗透率的车辆启动、车辆刹车停止、环形道路3个典型场景下的数值仿真。研究结果表明:在刹车停止场景中,全部车辆的停止波速最大提高了26.1%;在车辆启动场景中,启动波速最大提高了15.5%,车辆加速度和速度变化更为平缓;在环形道路场景中,当混合交通流中CAV渗透率由40%提高至100%时,在较大扰动条件下车辆的平均速度波动时间相较于低CAV渗透率场景下降了44.8%,波峰下降了5.7%,波谷上升了19.4%,而CAV渗透率较低时提出的优化策略对混合交通流的改善并不明显。由此可见,在当前构建实际混合交通环境与开展CAV实车试验比较困难的情况下,该跟驰...  相似文献   

5.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

6.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。   相似文献   

7.
为了解决现有无信号交叉口支路通行能力模型的假设过于理想化与计算误差偏大的问题,针对无信号交叉口常见1车道与2车道支路的各种车道功能划分,基于可接受间隙理论与主路车头时距服从M3分布,分析了无信号交叉口支路大小车型构成混合车队的交通流运行特性,建立了各种支路功能划分车道的通行能力模型;利用Vissim交通仿真软件,对模型的可靠性进行检验,并对模型进行简化以加强实用性。研究表明:当主路车流量为600~1 000 veh/h时,该模型误差小于2%。  相似文献   

8.
为解决未来自动驾驶专用车道的规划设计问题,本文提出了一种自动驾驶车与人工驾驶车混合交通流路段阻抗函数模型.首先,分析了自动驾驶专用车道的设置对混合交通流中车辆跟驰模式的影响;其次,在此基础上,引入微观跟驰驾驶模型,推导了不同自动驾驶车辆渗透率条件下的路段通行能力函数,分析了自动驾驶车辆对路段通行能力的影响;然后,将混合交通流通行能力引入经典的BPR函数,推导了考虑自动驾驶的混合交通流路段阻抗函数模型;最后,设计了数值实验讨论了自由流速度(自由流行程时间)、自动驾驶车辆的渗透率和安全车头时距对路段阻抗的影响.结果 表明:(1)当路段流量较小时,自动驾驶车辆的引入对路段阻抗行程时间的影响较小;(2)当自动驾驶车的渗透率为30%时,设置自动驾驶专用车道对行程时间的改善最为明显;(3)当流量较小时,自动驾驶车辆渗透率对路段阻抗行程时间的影响较小,而随着路段流量的增大,自由流速度和自动驾驶车辆渗透率将共同决定路段的行程时间.相关成果可为未来自动驾驶专用车道的规划与设计提供理论支撑.  相似文献   

9.
为研究网联自动驾驶车(connected autonomous vehicle, CAV)和人工驾驶车(human-pilot vehicle, HPV)所组成的异质交通流特性及公交车驾驶行为对环境的影响,首先,分析异质交通流中的4种跟驰模式:人工驾驶小汽车跟驰、人工驾驶公交车跟驰、自适应巡航控制(adaptive cruise control, ACC)跟驰和协同自适应巡航控制(cooperative adaptive cruise control, CACC)跟驰;接着,基于各跟驰模型的特点,构建车辆跟驰和换道的元胞自动机模型,综合考虑CAV车队特性、驾驶员与CAV各自反应时间特性以及HPV加塞特性,并利用跟驰模式判断参数融合不同跟驰模式特性,实现统一的模型表达;最后,仿真分析不同CAV渗透率下CAV排队强度及公交车换道行为对交通流的影响.结果表明:在一定的CAV渗透率下,促使CAV形成队列比单纯提高CAV渗透率更能有效提升道路通行效率;适量的公交换道有助于充分利用道路通行能力,过多的公交换道则会妨碍正常交通,公交换道对交通流造成的通行效率衰减随CAV渗透率的增大而减小;同步流状态...  相似文献   

10.
为研究含人工车的混合交通流下部分智能网联车借道城市公交专用车道的控制问题,以 两个信号交叉口间公交专用车道为研究对象,提出以不妨碍公交车优先通行、满足换道动机和换 道安全条件的智能网联车借道公交车道控制策略。基于公交车道控制预测模块设计智能网联车 进入和离开公交专用道规则,采用改进最小化由换道引起的所有制动模型计算的收益作为智能 网联车换道时激励准则。期望跟随车类型若为人工车时,目标车辆礼让系数取1;妨碍公交优先 必须离开公交道时,满足安全规则即可。通过具体仿真实验予以验证,结果表明:本方法在高交 通需求下,与不允许借道控制方法、基于清空距离公交专用车道控制方法对比,人均延误分别减 少60%和40%,车均延误分别减少65%和32%,渗透率在30%~40%范围内控制效果显著。  相似文献   

11.
为量化大型车对城市道路交通运行的影响,提出基于大量车牌识别(License Plate Recognition, LPR)数据研究路段、交叉口左转、交叉口直行这3类车头时距,分析大型车影响的方 法。首先,将LPR数据按采集位置划分,提出差异化数据预处理流程,得到用于考察不同车道条 件下4类过车组合的车头时距集合;然后,以高斯混合模型(Gaussian Mixed Model, GMM)、对数正 态混合模型及高斯/对数正态混合模型这3类共13个子模型分别对上述所有集合建模,以最大期 望算法求解参数;之后,以Kolmogorov-Smirnov检验排除不满足要求的模型,综合赤池信息准则 与最小描述长度准则对剩余模型择优;最后,基于最优模型参数定量评价大型车对不同类型车道 的影响。以某城市区域多个卡口与电子警察设备采集的大量LPR数据验证方法有效性。结果表 明:路段与交叉口、交叉口各功能车道的车头时距不符合同一分布,宜区分建模;3个密度分支的 GMM拟合各类车头时距集合均有最佳表现,其他模型在不同阶段体现出不适应性;各种车道条 件下,大型车对相关过车组合的车头时距均值及标准差均有不同程度的影响,且该影响按照路 段、交叉口左转、交叉口直行的顺序依次递减。拟合结果可供大型车影响评价借鉴。  相似文献   

12.
从超高速公路三波护栏防护性能角度出发,运用有限元软件HyperWorks和LS-DYNA进行联合仿真。分别以100~180 km·h-1为碰撞速度、5°~20°为碰撞角度,以护栏最大动态变形量和吸能量、汽车的驶出角和合成加速度为评价指标,对三波护栏的防护性能进行考量。研究结果表明:随着碰撞速度和角度增加,护栏吸能占比曲线呈先增后减再增趋势,波形梁是护栏的主要吸能部件。碰撞速度为160 km·h-1、碰撞角度为20°时,护栏最大动态变形量为880.2 mm,超出750 mm安全值;碰撞速度为140 km·h-1、碰撞角度为20°时,车辆驶出角为12.16°,超过驶入角的60%,对临近车道车辆造成不利影响,车辆合成加速度峰值为33.05 g,大于安全值20 g。该三波护栏用于设计速度低于140 km·h-1的超高速公路,防护性能满足安全评价标准。  相似文献   

13.
考虑疏散交通的动态性和风险性,研究多模式疏散交通车队配置与车道分配的联合优化问题。首先,根据不同类型车辆的自由流速度,将路网离散为多尺寸元胞网络,采用元胞传输模型模拟混合交通流。然后,以最小化疏散总风险为目标,将多模式交通协同的动态疏散问题描述为混合整数线性规划模型,引入惩罚项消除因模型松弛产生的“车辆滞留”问题。在 NguyenDupuis路网中分析不同疏散需求下的最优车队配置、车道分配、疏散效率和疏散路径。结果表明:存在一个疏散交通需求区间,相比单模式疏散,组织多模式车队能够进一步降低疏散总风险, 而且最优的公交车配置比例呈阶梯变化;受路网通行能力限制,路网利用率存在上限;疏散总风险指标对疏散需求的变化比网络清空时间更敏感;多模式交通共享的路段一般位于临近风险源的出口通道,大容量的公交车优先占用最短路线,以提升疏散系统的效率。  相似文献   

14.
考虑网联自动驾驶车辆(Connected Autonomous Vehicle, CAV)应用先进的车联网与自动驾驶技术,可以采用智能交叉口的组织形式,大幅提升交叉口的通行效率,为降低CAV与人工驾驶车辆(Human-driven Vehicle, HV)混行条件下城市交通系统的整体出行成本,提出智能交叉口在城 市交通网络中的布局优化问题,建立数学优化模型并求解。首先,基于对两类车辆行驶特性的分析,建立混合用户均衡模型,描述CAV与HV的路径选择行为;其次,从交通规划者的角度,以系统最优为目标,整合混合用户均衡模型,建立面向新型混合交通流的智能交叉口网络布局优化模型,并利用改进的遗传算法求解;最后,选取Sioux-Falls交通网络作为案例分析,验证模型与算法的有效性,并研究CAV渗透率变化对优化结果的影响。研究表明,智能交叉口在城市路网中的合理规划极大地提高了新型混行场景下城市交通系统的出行效率,同时,大幅降低了由于网联自动 驾驶单方面技术优势带来的CAV与HV的出行效率差距,增进了出行公平性。  相似文献   

15.
快捷货物运输需求的增加带来碳排放的激增,运输结构调整和技术进步是交通运输领域碳减排的主要方式。为分析快捷货物各运输方式间的竞争关系及临界运距,基于Logit模型构建包含经济性、时效性、稳定性、安全性、便捷性及绿色性等服务属性的市场分担率模型,基于分担率模型构建各运输方式间临界运距-高铁时速关系模型,并通过实例分析验证模型。实例结果表明:250 km·h-1时速下,高铁快运的绝对优势运距范围为700~1500 km,优势运输时间为2.8~6.0 h,考虑碳排放因素时,600 km及以上运距均为高铁快运的绝对优势运距区间,优势运输时间为2.4 h及以上;碳排放权重系数每增加0.1,高铁较公路的绝对优势运距区间左边界会扩大100 km;200,250,300,350 km·h-1这4种时速下,250 km·h-1的公路-高铁临界运距提升率最大,较200 km·h-1提升50%;当航空快运碳排放因子降低1/2时,其优势运距范围左边界会扩展23%。  相似文献   

16.
高速公路由于交通事件的发生,常产生瓶颈区域致使车辆频繁换道.为提高高速公路瓶颈区车辆通行效率与安全性能,讨论车路协同环境的优越性,提出了车路协同环境下高速公路瓶颈车辆换道引导方法,通过建立离散选择模型的形式定义传统车辆与智能车辆的换道考虑因素,根据车辆所处位置定义自由换道与强制换道的效用函数,考虑宏观交通流不同渗透率下的速度密度关系,求解期望换道概率并将其引入考虑横向交通流的元胞传输模型以模拟宏观交通流换道行为,从而对瓶颈上游的智能车辆进行引导.利用车辆换道引导方法对宏观交通流进行数值仿真,并设置5组不同渗透率下的交通流.研究结果表明:车路协同环境下不同渗透率的交通流经过瓶颈区的总行程时间均有所减少,渗透率为1时对应的总行程时间最小,为296.21 s,渗透率为0.4变为0.6时总行程时间减小幅度最显著,为8.3%;渗透率为0.8变为1时总行程时间减小幅度最小,为2.7%,因此利用该引导方法对渗透率为0.6的交通流进行引导,其效果最显著.在使用引导方法后,各车道密度趋于均衡,能有效缓解瓶颈区向上游传播的堵塞波.  相似文献   

17.
为适应未来智能网联环境下精细化交通流预测需求,提出一种基于混合深度学习 (Hybrid Deep Learning, HDL)的车道级交通流速度预测模型. 模型以智能网联系统强大的数据采集和计算能力为基础,采用集成经验模态分解算法将原始速度序列分解为多个固有模态函数分量和残差分量,并将所得分量重构为模型输入;利用双向长短期记忆神经网络和注意力机制,构建深度学习模型框架;为检验模型预测精度和可靠性,选择北京市二环路多个连续车道断面速度数据进行算法验证. 结果表明,HDL模型在不同车道均有理想的预测结果,单步和多步预测精度均显著优于对比模型.  相似文献   

18.
为评估ETC使用率提升后对收费广场通行效率的影响,并提出合理车道配置方案,依托深圳机荷高速福民收费站车道布设和收费数据,建立包含跟驰和换道行为的收费广场交通行为模型,开发收费广场交通运行微观仿真平台。分别针对平、高峰时段,以ETC车道数及使用率为变量设计80组仿真方案,综合评价不同方案下收费广场通行效率。与实测结果的对比表明:仿真平台对平、高峰时段交通量误差仅为3.46%和6.45%,为收费广场车道配置仿真分析提供了准确、可靠的实验平台;未来ETC使用率提升至90%时,福民收费站最优车道配置方案为“4条ETC车道加 5条ETC/MTC混合车道”,此时高峰时段单车平均延误可降至2.93 s·veh-1,较目前的60.23 s·veh-1 降低95%。结合交通量、交通组成及ETC使用率开展收费广场车道合理化配置研究,可为收费广场设计、运营提供关键技术支撑。  相似文献   

19.
针对四车道高速公路部分占用超车道交通控制区开展研究,得到交通控制区各主要区段行车道和超车道上的流量分布曲线,换道方向与换道率曲线,速度分布曲线,标定 Greenshields 模型并据此确定各主要区段的道路通行能力. 研究结果表明:当交通量处于较低水平时,超车道的利用率较低,只有正常水平的20%左右,此时应对车道划分、车道设置及交通控制方式等进行优化调整;较低交通量水平下,交通控制区的平均车速、运行速度等均较高,宜使用运行速度作为限速值的取值依据;施工作业区段的道路通行能力只有正常路段的 89%左右,在保障交通安全的前提下应着力提高瓶颈路段的道路通行能力,并将瓶颈路段的断面通行能力作为是否进行强制分流的依据.  相似文献   

20.
交织区是快速路系统的重要组成部分,由于车辆频繁换道、相互作用复杂,容易造成交通瓶颈。本文提取城市多车道交织区时间分辨率为0.1 s、空间分辨率为0.1 m·px-1 的高精度车辆轨迹,分析交织区及相邻路段的交通流和车辆行为特性,提出分区元胞自动机模型。在上游和下游换道模型中,建立基于速度差、车辆间距的换道动机规则、间距规则及Logistic换道概率规则。对于交织影响区,建立考虑速度、间距及路径转换需求的换道动机规则,根据安全风险构建换道时机的多步决策规则,提出基于换道频率Gaussian分布模型的换道概率规则,并对主要参数进行灵敏度仿真测试分析,模型具备评估交织区不同换道状态的实际应用潜力。仿真与实测显示,本文 模型流量、速度、密度及换道分布等特性与实际相符,能有效反映车辆在不同位置的换道需求与强度差异性,刻画多车道交织区复杂的换道行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号