首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
浮式海上风力机运动性能和锚泊系统(英文)   总被引:2,自引:0,他引:2  
The development of offshore wind farms was originally carried out in shallow water areas with fixed(seabed mounted) structures.However,countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas.The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform.This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine(FOWT) system.The wind turbine was modeled as a wind block with a certain thrust coefficient,and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software.The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined.The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.  相似文献   

2.
陈前  付世晓  邹早建 《船舶力学》2012,16(4):408-415
支撑结构设计是大型海上风电机组设计的重要部分。文章分析了海上风电机组的各种环境载荷,并以3MW风力机组为例计算其所受环境载荷,包括作用在支撑结构顶端的由风机叶轮转动引起的水平轴向力、作用在塔筒上的风载荷以及作用在基础上的海流、海浪载荷,并采用非线性弹簧来模拟基础与海底土层之间的相互作用。在考虑风轮影响情况下,利用有限元法对支撑结构进行了模态分析。最后,分析了环境载荷作用下支撑结构的动态响应。计算结果表明,在对海上风力发电机组进行动态响应计算时,环境载荷之间的相互耦合作用不能忽略。  相似文献   

3.
Loads from storm waves can in some cases be dimensioning for offshore wind turbine substructures. Accurate determination of nonlinear wave loads is therefore important for a safe, yet economic design. In this paper, the fully nonlinear waves, realized by a fully nonlinear potential wave solver OceanWave3D, are incorporated into coupled aero-servo-hydro-elastic simulations for a reduced set of wave-sensitive design load cases, in comparison with the widely used linear and constrained waves. The coupled aero-elastic simulations are performed for the DTU 10 MW reference wind turbine on a large monopile at 33 m water depth using the aero-elastic code HAWC2. Effect of the wave nonlinearity is investigated in terms of the ultimate sectional moments at tower bottom and monopile mudline. Higher ultimate moments, 5% at tower bottom and 13% at monopile mudline as maximum, are predicated when the nonlinear waves are used. It could be explained by the fact that the extreme nonlinear waves, that are close to the breaking limit, can induce resonant ringing-type responses, and hereby dominate the ultimate load responses. However, the constrained wave approach shows marginal difference compared to the standard linear wave approach. It can be concluded at least for the present configuration that the industry standard approaches (linear and constrained wave approach) underestimate the ultimate load responses on offshore wind turbines in severe sea states.  相似文献   

4.
This paper presents a preliminary technical feasibility study on a new methodology proposed for installing a monopile-based bottom supported offshore wind turbine structure. The concept is developed to address the problem of “waiting for a suitable weather window” which is commonly faced by the existing installation methods that uses a typical jack-up platform. In the methodology, a floating vessel along with a floatable subsea structure fitted with a hull on the top, hereafter named SSIP (subsea structure for installing a pile), is proposed first to install a monopile. Then the same structure is used to carry an FIUS (fully integrated upper structure) of an offshore wind turbine, which is characterized by a telescopic tower, and install it over the monopile by using an FOP (float-over-pulling) arrangement. Here, the installation methodologies are first briefly described along with the critical load cases associated with them. These load cases are then numerically studied for a significant wave height (HS) of 2.5 m, and the results are summarized. For installing a fully integrated offshore wind turbine upper structure on a monopile foundation by the FOP method, two installation schemes are presented, and their dynamic characteristics are compared. It is shown that the proposed methodologies have potential to provide installation solutions which can be environmentally more robust compared to the existing method for installing an offshore wind turbine.  相似文献   

5.
The concept of a shared mooring system was proposed to reduce mooring and anchoring costs. Shared moorings also add complexity to the floating offshore wind farm system and pose design challenges. To understand the system dynamics, this paper presents a dynamic analysis for a dual-spar floating offshore wind farm with a shared mooring system in extreme environmental conditions. First, a numerical model of the floating offshore wind farm was established in a commercial simulation tool. Then, time-domain simulations were performed for the parked wind farm under extreme wind and wave conditions. A sensitivity study was carried out to investigate the influence of loading directions and shared line mooring properties. To highlight the influence of the shared line, the results were compared to those of a single spar floating wind turbine, and larger platform motions and higher tension loads in single lines are observed for the wind farm with shared moorings. The loading direction affects the platform motions and mooring response of the floating offshore wind farm. Comparing the investigated loading directions to the 0-deg loading direction, the variation of mean mooring tension at the fairlead is up to 84% for single lines and 16% for the shared line. The influence of the shared line properties in the platform motions and the structural responses is limited. These findings improve understanding of the dynamic characteristics of floating offshore wind farms with a shared mooring system.  相似文献   

6.
近年来海上浮式风机的研究备受关注,安全可靠的系泊系统将保证风机在风、浪、流等复杂环境荷载作用下稳定运行,准确合理地描述风机运动将为评估风机发电效率提供支持。以半潜型浮式风机的系泊系统为研究对象,基于经典悬链线理论,采用准静态分析法提出一套系泊系统的设计方法。通过坐标变换,得到风轮真实的俯仰运动用于计算风机的动力效应及评定其发电效率。采用动力法分析了系泊系统锚链的导缆孔位置、预张力大小、锚链间夹角等参数对风机系统发电效率、浮式平台运动性能和系泊锚链张力的影响,得到了浮式平台迎风面俯仰倾角、水平偏移及锚链张力随参数的变化规律,为半潜型浮式风机系泊系统的设计提供了参考。  相似文献   

7.
本文主要研究在非线性混合海况(即风浪和涌浪组合海况)下,以NREL 5MW_Baseline Monopile近海风机为研究对象,对其塔筒底部(基线)所受到的剪力和弯矩载荷的动力响应进行仿真。在近海风机的时域仿真中,选用了Ochi-Hubble六参数波浪谱,并编制了该谱的程序嵌入到FAST中进行编译。计算过程中,共进行了20次10 min的仿真分析。对于得到的短期载荷,给出了波高程,塔筒底部首尾向剪力和弯矩在线性与非线性不规则波作用下的时程曲线对比图。采用分块最大值法对每一次的短期载荷提取极值,并基于20次仿真所得的极值,给出了塔筒底部首尾向剪力与弯矩在线性与非线性不规则波作用下的超越概率曲线对比图。研究表明,在非线性混合海况下进行近海风机塔筒底部载荷的动力响应研究,计算结果对工程实际应用具有指导意义。  相似文献   

8.
Several floating wind turbine designs whose hull designs reflect those used in offshore petroleum industry have emerged as leading candidates for the future development of offshore wind farms. This article presents the research findings from a model basin test program that investigated the dynamic response of a 1:50 scale model OC3 spar floating wind turbine concept designed for a water depth of 200 m. In this study the rotor was allowed to rotate freely with the wind speed and this approach eliminated some of the undesirable effects of controlling wind turbine rotational speed that were observed in earlier studies. The quality of the wind field developed by an array of fans was investigated as to its uniformity and turbulence intensity. Additional calibration tests were performed to characterize various components that included establishing the baseline wind turbine tower frequencies, stiffness of the delta type mooring system and free decay response behaviour. The assembled system was then studied under a sequence of wind and irregular wave scenarios to reveal the nature of the coupled response behaviour. The wind loads were found to have an obvious influence on the surge, heave and pitch behaviour of the spar wind turbine system. It was observed from the experimental measurements that bending moment at the top of the support tower is dominated by the 1P oscillation component and somewhat influenced by the incoming wave. Further it was determined that the axial rotor thrust and tower-top shear force have similar dynamic characteristics both dominated by tower’s first mode of vibration under wind-only condition while dominated by the incident wave field when experiencing wind-wave loading. The tensions measured in the mooring lines resulting from either wave or wind-wave excitations were influenced by the surge/pitch and heave couplings and the wind loads were found to have a clear influence on the dynamic responses of the mooring system.  相似文献   

9.
For offshore wind farms which are planned in sub-arctic regions like the Baltic Sea and Bohai Bay, support structure design has to account for load effects from dynamic ice-structure interaction. There is relatively high uncertainty related to dynamic ice loads as little to no load- and response data of offshore wind turbines exposed to drifting ice exists. In the present study the potential for the development of ice-induced vibrations for an offshore wind turbine on monopile foundation is experimentally investigated. The experiments aimed to reproduce at scale the interaction of an idling and operational 14 MW turbine with ice representative of 50-year return period Southern Baltic Sea conditions. A real-time hybrid test setup was used to allow the incorporation of the specific modal properties of an offshore wind turbine at the ice action point, as well as virtual wind loading. The experiments showed that all known regimes of ice-induced vibrations develop depending on the magnitude of the ice drift speed. At low speed this is intermittent crushing and at intermediate speeds is ‘frequency lock-in’ in the second global bending mode of the turbine. For high ice speeds continuous brittle crushing was found. A new finding is the development of an interaction regime with a strongly amplified non-harmonic first-mode response of the structure, combined with higher modes after moments of global ice failure. The regime develops between speeds where intermittent crushing and frequency lock-in in the second global bending mode develop. The development of this regime can be related to the specific modal properties of the wind turbine, for which the second and third global bending mode can be easily excited at the ice action point. Preliminary numerical simulations with a phenomenological ice model coupled to a full wind turbine model show that intermittent crushing and the new regime result in the largest bending moments for a large part of the support structure. Frequency lock-in and continuous brittle crushing result in significantly smaller bending moments throughout the structure.  相似文献   

10.
The dynamic characteristics of offshore wind turbines are heavily affected by environmental loads from wave and wind action and nonlinear soil behaviour. In the design of the monopile structures, the fatigue load due to wind and wave loading is one of the most important problems to consider. Since the fatigue damage is sensitive to the foundation stiffness and damping, increasing the accuracy of analysis tools used in the design and optimization process can improve the reliability of the structure and reduce conservatism, thereby leading to a more cost-efficient design. In this context, analysis of field data is important for calibrating and verifying purposes. This paper presents analysis of measured accelerations and strains from a wind farm in the North Sea with monopile foundations. Field data during idling conditions, collected over long periods of operation, are analysed and the natural frequencies are determined, and damping is estimated. The measured natural frequencies are compared to calculated values using an aero-servo-hydro-elastic code, showing a good agreement in the frequency range below 2 Hz. Variation of the natural frequencies with intensity of loading may indicate effect of soil nonlinearity on the overall OWT response. Since the first natural bending modes have the largest potential to mobilize soil reactions, they are of primary interest in this context. The effect of load (wave, wind and dynamic bending moment) on the first natural frequency is investigated using different analysis techniques in the frequency domain and time domain. A clear correlation between load level and first natural frequency is demonstrated. A simple nonlinear SSI model of the tower/soil system is employed to numerically investigate the observed changes in the measured first natural frequency with the level of loading and increased overall damping. The simulated results reproduce the general trends in the observed reduction in the first natural frequency and increased damping ratio with the load level. However, the effect of the load level is less than that observed in the measurements, indicating contribution also from other factors than soil nonlinearity.  相似文献   

11.
对海上风机支撑结构进行动力响应分析,求出结构危险节点的载荷谱和功率谱密度函数,结合疲劳损伤模型和Dirlik概率模型,分别在时域和频域内对支撑结构进行疲劳寿命分析.由于时域法计算疲劳寿命需进行应力循环计数,这一过程需处理的数据庞大,耗时长.频域法省去应力循环计数,代之以概率密度函数,可相对准确、快速地计算结构的疲劳寿命.分析结果表明,采用Dirlik概率模型的频域分析法能较准确地反映海上风机支撑结构在随机载荷作用下的疲劳损伤情况,计算结果误差在可接受范围内.  相似文献   

12.
Wind energy is clean and sustainable. Taiwan is establishing offshore wind farms using wind turbines in the Taiwan Strait. However, these are located in an earthquake-prone area with sandy seabed conditions. To ensure their safety and reliability, the turbines’ support structure must be protected against wind, waves, and seismic loads. Tuned mass dampers (TMDs) are commonly employed to reduce structural vibrations. A TMD is more simply incorporated into turbine structures than are other energy dissipation devices. In this study, a 1:25-scale test model with a TMD was constructed and subjected to shaking table tests to experimentally simulate the dynamic behavior of a typical 5-MW wind turbine with a jacket-type support structure and pile foundation. The scaled-down wind turbine model has a nacelle without rotating blades; therefore, the aerodynamic and rotational effects due to the rotating blades were ignored in this study. A large laminar shear box filled with saturated sandy ground was used to simulate the typical seabed conditions of Taiwanese offshore wind farms. The TMD system was designed to be tuned the first-mode frequency of the test model. Two ground accelerations, selected by considering wind farm site condition and near-fault characteristics, were used for excitation in the test. The responses of the test model with and without the TMD system were compared, and the influence of soil liquefaction on the effectiveness of TMD vibration control was addressed.  相似文献   

13.
海上风电技术特性对比分析   总被引:1,自引:0,他引:1  
刘悦  时志刚  胡颖  张婷 《船舶工程》2012,34(1):95-99
从海上风能开发利用的技术包括所涉及风电场建设(机组排列、安装及运输、运行监控等)、风电机组设计、并网(海上高压系统、海底电缆、岸上接入设施等)等方面,对比分析海上风电与陆上风电的技术差异,结果表明海上风电在基础安装、运营维护等方面较陆上风电要求更高、难度更大。为进一步发展海上风电提供了参考。  相似文献   

14.
海上风电基础属于典型的柔性结构。由于冰与柔性抗冰结构相互作用的复杂性,长期以来尚未形成基于动冰力响应分析的结构设计。结构抗冰设计中大都是从极端荷载出发,只考虑最大静冰力或最大倾覆力矩。基于对渤海辽东湾柔性抗冰结构的多年监测,发现强烈的冰激振动引起柔性结构的风险性要远大于极端静冰荷载下结构的整体安全问题。为了明确冰区风电基础结构的抗冰性能及抗冰设计的合理性,文章结合基于多年现场冰与结构作用观测及冰荷载的研究成果,明确该类柔性结构与海冰作用形式及其动力特性;提出了柔性抗冰结构设计中应考虑的主要失效模式及评价方法。最后,以渤海某典型风电基础为例,对其抗冰性能进行评价。该文的研究可为寒区风电基础的抗冰设计及安全保障提供合理依据。  相似文献   

15.
随着众多大型风场陆续建成,海上风场维护问题日益突出。海上风场多选址于强风浅水海域,恶劣的海况导致维修船运动剧烈,维修人员登陆十分困难。目前国外已有研究单位针对海上风场的人员登陆问题开展研究,开发登陆船或登陆系统,旨在确保维修人员安全登陆风机。而我国关于此方面的研究几乎空白。基于此情况,文章对已有登陆系统进行了归纳总结,并通过多体水动力的算例探究登陆风机时维修船的运动规律。通过文中的研究,可以得到结论:(1)有义波高仍是限制登陆系统工作和维修人员登陆的主要因素,其决定了海上维修的有效期窗口,我们国家有必要开发新技术和新系统来保证人员登陆风机。(2)不同波浪谱对维修船运动响应的影响不可忽视,在实际工程中有必要根据海上风场的实际海况,选择合适的双峰谱来预报维修船的运动响应。(3)风机桩基础的存在与否对维修船的耐波性有影响,需要在水动力分析中考虑;但当二者间的相对距离在若干米内时,耐波性受此距离影响不大。  相似文献   

16.
The complexity of the dynamic response of offshore marine structures requires advanced simulations tools for the accurate assessment of the seakeeping behaviour of these devices. The aim of this work is to present a new time-domain model for solving the dynamics of moored floating marine devices, specifically offshore wind turbines, subjected to non-linear environmental loads. The paper first introduces the formulation of the second-order wave radiation-diffraction solver, designed for calculating the wave-floater interaction. Then, the solver of the mooring dynamics, based on a non-linear Finite Element Method (FEM) approach, is presented. Next, the procedure developed for coupling the floater dynamics model with the mooring model is described. Some validation examples of the developed models, and comparisons among different mooring approaches, are presented. Finally, a study of the OC3 floating wind turbine concept is performed to analyze the influence of the mooring model in the dynamics of the platform and the tension in the mooring lines. The work comes to the conclusion that the coupling of a dynamic mooring model along with a second-order wave radiation-diffraction solver can offer realistic predictions of the floating wind turbine performance.  相似文献   

17.
This study performed experimental investigation on the dynamic response of an in-place floating offshore wind turbine (FOWT) under freak wave actions. Based on the method of wave profile modulation, various freak wave profiles embedded in unidirectional Gaussian seas were generated in wave basin and the action of these waves on the FOWT was measured and analyzed, which has not been done before. The motions of FOWT were analyzed in time domain as well as time-frequency domain. The effect of freak wave parameters on FOWT motions was addressed, i.e., freak wave height, freak wave period, large crest, and deep trough. The dynamic response of FOWT was observed as a spike at the occurrence of freak wave in a conventional random wave, where the impact of freak wave can last for 17 spectral peak periods of wave. Data analysis shows that the motions of FOWT increased linearly with the freak wave height. In addition, the occurrence of freak wave induced the coupled effect on surge and pith, which was strengthen with the increase of freak wave height and wave period. Compared to a large crest, a deep trough of freak wave led to stronger motions and was supposed to be a key concern on the safety of the FOWT. The novel findings in this study provided a reference for the design of survival load on a FOWT and benchmarks for validating numerical models.  相似文献   

18.
OC4半潜浮式风机综合性能较好,但其浮式基础结构质量和结构复杂性使其建造成本高昂,而WindFloat半潜浮式风机浮式基础具有结构简单、建造成本低和减摇效果好等优点,但是适应水深较小且只适合特定海域。结合OC4和WindFloat半潜浮式风机浮式基础的结构特点,针对200 m水深环境设计OC4-WindFloat半潜浮式风机基础。基于叶素理论、莫里森公式和势流理论,通过有限元软件对OC4-WindFloat半潜浮式风机的固有周期及风浪联合作用下的动态响应进行耦合分析,并与OC4半潜浮式风机结果进行对比研究。结果显示,OC4-WindFloat半潜浮式风机固有周期及动态响应均满足相关规定,且具有比OC4更低的建造成本,相比WindFloat可适用更深的海域。研究结果对于浮式基础型式研究有一定的指导意义。  相似文献   

19.
The development of robust design tools for offshore wind turbines requires knowledge of both wave and wind load models and response analysis. Verification of the numerical codes is required by the use of experiments and code-to-code comparisons. This paper presents a hydroelastic code-to-code comparison between the HAWC2 and USFOS/vpOne codes for a tension leg spar (TLS) wind turbine with a single tether. This concept is hence based on the TLP and Spar concepts. The comparison is performed using coupled hydroelastic time domain simulations. Several aspects of modelling, such as wave simulation, hydrodynamic and structural modelling, are addressed for the TLS. Wave-induced motions of the support structure affect the power performance of a wind turbine. Furthermore, overload of the tension leg should be avoided. In this paper, the motion and tension responses are compared. The tension leg introduces nonlinear effects on the spar motion. These nonlinear effects include combined-frequency effect such as double, difference and sum of wave, as well as natural pitch and surge frequencies. Hydrodynamic loads are based on a combination of the Morison formula and the pressure integration method. A comparison indicates that the motion and tension responses obtained in the two codes are in good agreement.  相似文献   

20.
海上风电场维护船船型总阻力和纵摇升沉运动研究   总被引:1,自引:0,他引:1  
根据海上风电场维护船的使用和性能要求,分析小型单体船、双体船、多体船对于海上风电场的实用性,最终确定采用双体船型为风电维护船船型。结合小水线面双体船和穿浪双体船的船型优点,对风电维护船片体进行改进,得到常规型和改进型双体风电维护船型方案。采用CFD仿真技术,利用常规双体船型探索双体船阻力CFD仿真方法,对改进船型进行阻力仿真计算。采用船舶设计软件NAPA的耐波性模块计算分析两种船型的纵摇和升沉性能,得到了维护船不同速度和浪向角时两船型的纵摇和升沉响应曲线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号