首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
商合杭铁路芜湖长江公铁大桥为(99.3+238+588+224+85.3)m的5跨连续钢桁梁高低矮塔斜拉桥,南、北桥塔承台以上塔高分别为130.5m、155m。大桥上层为双向8车道城市主干路,下层为4线铁路。钢桁梁横向设计为双索面双主桁结构,主桥、引桥公路桥面顶至铁路桥面处高差分别为11.136m、14.976m,主桁高15.0m。从美观角度考虑,主梁选择纯华伦型桁架,节间长度为14.0m。主桁断面采用整体钢箱与桁架组合的新型箱-桁组合结构,针对索锚点在上弦和下弦2种不同设计方案进行比选,结果显示,斜拉索锚固在下弦传力途径更为简洁,改善了主梁刚度,施工中焊接及拼装工作量少,吊装次数少,节省了架设时间。  相似文献   

2.
沪通长江大桥主航道桥为(140+462+1 092+462+140)m的公铁两用双塔斜拉桥,采用公路在上、铁路在下的双层桥面布置,主梁为三片主桁钢桁梁结构。主梁上弦公路桥面采用正交异性整体钢桥面板(两侧边跨252m范围公路桥面采用纵横梁结合混凝土桥面的结构形式),下弦铁路桥面由与主梁断面同宽的钢箱组成,上、下弦桥面与主桁结合参与整体受力。主桁采用N形桁式,上、下弦杆件均采用板肋加劲箱形截面,腹杆采用箱形或H形截面,主桁节点为全焊接整体节点。在全桥主桁节点处均设有横联。采用桥梁空间分析软件3D-bridge开展结构整体计算并采用ANSYS进行节点应力分析,结果表明结构设计满足规范要求。  相似文献   

3.
刘琴  杨钻  王雷 《桥梁建设》2023,(2):98-104
汕头市牛田洋大桥主桥为(77.5+166.1+468+166.1+77.5) m公轨两用钢桁梁斜拉桥。主桥采用双层桥面布置,上层为双向8车道一级公路兼城市快速路,下层为双线跨座式轨道交通。该桥采用半飘浮体系,纵、横向正交分离的减隔震约束体系。主梁采用带副桁的板桁结合钢桁梁结构,主桁采用三角桁,桁高11 m, 2片主桁中心间距16 m;副桁上弦杆采用平行四边形箱形截面,弦杆顶板中心线间距37.2 m。主梁共63个节间,标准节间长15.1 m,主跨及次边跨公路桥面系采用纵横梁体系正交异性整体钢桥面板,边跨公路桥面系采用纵、横梁支撑的混凝土桥面板;下层轨道交通无桥面板,设置下平纵联。索梁锚固采用锚拉板式钢锚箱。主梁标准节段采用两节间大节段全焊制造。边跨、次边跨钢桁梁采用顶推法施工,主跨钢桁梁采用悬臂吊装法施工。  相似文献   

4.
郑济高铁黄河特大桥根据线路总体走向,经防洪影响评价论证,确定主桥长度为2 016m。由于大桥法线与主流方向约有10°夹角,平层布置桥面宽度过大,影响河势发展和临近险工,因此该桥确定采用双层桥面布置。考虑郑济高铁设计速度为350km/h,为避免黄河桥限速,确定采用无砟轨道结构。经桥式方案比选,主桥选择刚度最优、经济性最好的变高度连续钢桁梁桥,桥跨布置为(112+6×168+112)m+7×112m。主梁采用三主桁下弦加劲钢桁梁,通过支点处设加劲弦的方式增加梁高,改善结构受力并使桥梁立面呈现拱形构造。铁路桥面采用正交异性钢桥面板,公路桥面采用混凝土桥面板。下部采用矩形承台+三柱式圆端形桥墩。主桥变高连续钢桁梁采用双侧栈桥配合龙门吊机悬臂拼装的方法架设。  相似文献   

5.
平潭海峡公铁两用大桥元洪航道主桥采用(132+196+532+196+132)m钢桁梁斜拉桥。斜拉桥主梁为带副桁的板桁结合钢桁梁结构,双层桥面布置,上层为6车道高速公路,下层为双线铁路。3号桥塔与主梁间设纵向固定支座,4号桥塔与主梁间设纵向阻尼器。主桁采用N形桁式,桁高13.5m,桁宽15m,标准节间长度14m;副桁架上弦杆顶板中心线间距35.7m。有索区公路桥面及铁路桥面采用密横梁支撑正交异性整体钢桥面结构;无索区公路桥面采用密横梁支撑混凝土桥面结构。在铁路桥面系压重区设封闭钢箱,箱内采用素混凝土集中压重。桥墩处主桁架的竖杆上设置板式桥门架。梁端锚固采用锚拉板结构。该桥采用两节间大节段全焊制造及吊装,最大吊重1 250t,双悬臂架设。  相似文献   

6.
铜陵公铁两用长江大桥主桥钢梁设计   总被引:2,自引:0,他引:2  
铜陵公铁两用长江大桥主桥为(90+240+630+240+90)m五跨连续钢桁梁斜拉桥,上层布置6车道高速公路,下层布置4线铁路。该桥采用飘浮体系,在主梁和桥塔间设置阻尼装置;主梁采用板桁结合钢桁梁,3片主桁,N形桁架,单片主桁杆件的最大杆力为62 500kN;主桁采用全焊接桁片结构,单片主桁每2个节间为1个单元,桁高15.5m,节间长15m;公路、铁路桥面均采用密布横梁的正交异性钢箱桥面板;索梁锚固采用锚箱式,将斜拉索直接锚固在节点板下部;在铁路桥面系的钢箱梁内采用素混凝土集中压重;主桁采用桁片式架设方案,最大吊重约330t。  相似文献   

7.
韩家沱长江大桥主桥为(81+135+432+135+81)m双塔双索面钢桁梁半飘浮体系斜拉桥.主梁为平行弦钢桁梁,N形桁架,2片主桁,桁间距18m,桁高14 m,节间长13.5m,采用正交异性板整体钢结构桥面,节点为焊接整体节点结构形式.桥塔为折线H形桥塔,采用C50混凝土,最大塔高187.5 m.全桥共设56对镀锌高强钢丝斜拉索,呈平行的扇形双索面布置.在设计中通过在钢桁梁下弦杆底分段设置导流板经济有效地抑制了钢桁梁的涡激振动,研发了利用带控制开关的新型锁定装置控制列车制动力引起的结构振动、利用粘滞阻尼器控制地震响应的综合控制系统.  相似文献   

8.
平潭海峡公铁大桥大小练岛水道桥为主跨336 m的双塔双索面连续钢桁梁斜拉桥,其主梁为带副桁的板桁结合钢桁梁,采用倒梯形截面。主桁采用N形桁架,桁高13.5 m,主桁中心间距15 m。钢桁梁采用整节段全焊设计,2个节间为1个标准节段。该桥钢桁梁采用全工厂化整节段全焊制造、现场整节段架设方案施工。钢桁梁采用连续匹配方式进行工厂化整节段全焊接制造,首先进行杆件制造,然后进行桁片连续卧拼及桥面板块制造,最后进行节段连续匹配总拼,节段拼装与节段间试拼同时进行。钢桁梁中跨合龙采用整体节段全断面多点合龙技术施工,将合龙段作为1个整体桁段,利用架梁吊机整体提升合龙段,在合龙对位后进行精调,实现海上大型钢桁梁中跨快速、精确合龙。  相似文献   

9.
新白沙沱长江大桥主桥为(81+162+432+162+81)m的五跨连续钢桁梁斜拉桥,上层布置四线客运专线,下层布置两线货运专线,是国内首座六线铁路桥。为合理选择该桥钢桁梁的横断面,从结构的空间构成、受力及经济合理性等方面,对2片主桁与3片主桁、梯形斜桁断面方案与矩形直桁断面方案进行对比分析。结果表明:大桥采用2片主桁的矩形直桁断面方案既能满足线路的布置要求,又具有结构受力合理、钢结构制造安装方便和较好的经济性等优势。因此大桥钢桁梁最终采用2片主桁的矩形直桁断面,桁宽24.5m,桁高15.2m,上层桥面为正交异性板整体结构,下层桥面为纵横梁+道砟槽板结构。  相似文献   

10.
四川沿江高速金沙江特大桥设计采用单跨1 060 m简支钢桁加劲梁悬索桥,主缆中心距27.5 m,垂跨比1/9,吊索标准间距15 m。针对钢桁梁的立面布置、主横桁平联形式、桁架各杆件截面形式等,从结构受力、施工便利性及经济性等方面进行对比分析,最终确定大桥采用7.5 m桁高带竖杆华伦式K形平联钢桁架结构,栓焊结合连接方式,主弦杆及平联采用箱形截面,其他杆件采用H形截面;桥面系采用带小纵梁的密横梁体系正交异性钢桥面板,密横梁间距2.5 m。静、动力计算结果表明,钢桁梁强度、刚度均满足规范要求。设计采用的钢桁梁解决了桥址区运输、安装困难的问题,用钢量小,经济性突出。  相似文献   

11.
肖容 《城市道桥与防洪》2021,(6):238-241,269
为研究横向构件布置与截面设计对3主桁受力均衡性的影响,以宁波市三官堂大桥主桥160m+465m+160 m=785 m的大跨径钢桁架连续梁桥为例,采用Midas/Civil软件建立钢桁架梁模型,分析比较对称荷载与偏载作用下主桁结构支反力、轴力和位移等静力效应,得出了3主桁连续钢桁梁桥的内力分布特性.  相似文献   

12.
杭绍台铁路椒江特大桥主桥为(84+156+480+156+84)m五跨连续钢桁梁高速铁路斜拉桥。该桥采用塔墩固结、塔梁分离、塔梁间设置纵向阻尼器的半飘浮体系。主梁采用钢桁梁结构,2片主桁,中心距24.3m,主桁为三角形桁式。主桁杆件采用箱形截面;桥面系采用密横梁体系,桥面板采用不锈钢复合钢板,桥面板下横桥向设置多道U形肋,在每条轨道下设纵梁;索梁锚固采用锚拉板式;上弦节点处均设置桁式结构的横联或桥门架。主桥钢桁梁位于1.3‰的"人"字坡上,变坡点位于跨中,两侧钢桁梁通过刚性旋转形成纵坡,跨中处通过合龙杆件进行折线处理实现"人"字坡相交处的顺接过渡。  相似文献   

13.
公安长江公铁两用特大桥非通航孔(6~10号墩)采用4×94.5m连续钢桁梁结构,连续钢桁梁采用双片主桁结构,主桁中心距14.0m、桁高13.0m、节间距13.5m,共28个节间,主桁弦杆采用焊接整体节点,上、下弦杆在节点外采用高强度螺栓拼接。通过对钢桁梁架设方法研究,并结合工程特点及现场情况,该桥非通航孔钢桁梁采用WD70型全回转架梁吊机散拼法安装,在10号墩后方(公安侧)设置架梁拼装支架,自10号墩向6号墩方向逐节间、逐孔架设钢桁梁。其中,9号至10号墩间钢桁梁采用膺架法拼装;8号至9号墩间钢桁梁采用半悬臂拼装架设法拼装;6~8号墩间钢桁梁采用全悬臂拼装法拼装。该桥钢桁梁于2015年9月1日完成,架设过程质量安全可控,架设后钢桁梁线形良好,满足设计要求。  相似文献   

14.
黄冈公铁两用长江大桥主桥为(81+243+567+243+81)m五跨连续钢桁梁斜拉桥。该桥采用塔墩固结、塔梁分离的结构体系;采用双层钢桁梁结构,上层为双向4车道高速公路,桁宽27.5m,下层为双线铁路,桁宽16m;钢桁梁采用倒梯形斜主桁断面,桁高15.5m,节间长13.5m;主桁为N形桁架,主桁上、下弦杆均采用平行四边形截面,斜杆采用平行四边形截面或斜工字形截面;节点为焊接整体节点,节点位置的杆件均采用等强对拼连接,斜拉索通过内置式钢锚箱锚固在上弦节点内部;公路及铁路桥面系采用板桁结合的正交异性板整体桥面系;在上弦节点位置设置三角形桁架式横向联结系。  相似文献   

15.
重庆土湾大桥为城市公轨两用桥,结合该桥建设条件,经比选,采用跨径布置为(95+90+690+90+95)m的斜拉-自锚式悬索协作体系桥梁.主桥中跨采用正交异性钢桥面板桁架结构,边跨采用叠合混凝土桥面板桁架结构,钢-混结合段区域正交异性钢桥的U肋间增加了板式加劲肋进行刚度过渡.主桁标准节段长为15 m,2片桁横向间距为1...  相似文献   

16.
孙宗磊  张上 《桥梁建设》2021,(1):109-114
潍莱铁路跨青荣特大桥采用(120+82)m连续钢桁梁+框架墩结构.该桥钢桁梁采用变高度曲弦、带竖杆的三角桁,桁高13~25 m,桥面采用正交异性板结构,密布横梁体系,不设小纵梁.钢桁梁采用全焊接免涂装耐候钢,主桁采用Q370qENH钢、联结系采用Q345qDNH钢,钢材耐大气腐蚀性指数I≥6.0.钢桁杆件间连接采用全焊...  相似文献   

17.
马驰  刘世忠 《公路》2015,(2):65-69
某公铁两用斜拉桥主跨567m,公路桥面宽27.5m,铁路桥面宽16.0m,上宽下窄;钢桁梁采用N形桁架,倒T形截面,主桁腹杆斜率达1∶2.7。对主桁断面形式在经济性、挠度、刚度和稳定性方面进行比较研究。为研究该桥结构受力,建立该桥密横梁有限元模型,进行合理成桥状态模拟计算,分析各个工况下结构的内力、变形。分析结果表明,斜拉索最大应力为686.38MPa,主桁竖向最大挠度为101.2cm,梁端转角为1.48‰rad,该桥在应力、稳定性和刚度方面均满足规范要求。  相似文献   

18.
无锡市金匮桥为旧桥重建项目,新桥主桥设计为(55.7+105+55.7)m下承式钢桁梁桥,综述该桥总体设计及结构特色。该桥采用2片主桁结构,主桁采用通透率高的三角式桁架,主桁高度采用二次抛物线变化形式;主梁采用整体钢箱梁以解决宽桥面与低梁高的矛盾;将非机动车道和人行道支承于主梁外挑的托架上,通过调整托架高度解决机动车道与非机动车道高差渐变的问题;通过对下承式钢桁梁外形的优化,使该桥成为具有地标意义的城市景观桥梁。  相似文献   

19.
贵广(南广)高铁北江特大桥主桥为(57.5+109.25+230+109.25+57.5)m的钢桁梁斜拉桥,钢桁梁采用2片三角形桁式结构。该桥主墩两侧钢桁梁节间利用架梁吊机对称架设安装,设1个合龙口(位于跨中)。针对该桥跨度大、合龙杆件多、安装精度要求高等难点,钢桁梁合龙前,进行钢桁梁姿态监测、高程控制等准备工作。根据合龙误差计算结果,进行合龙口处标高、转角、温度、轴线偏位、横向扭转、纵向位移等参数敏感性分析,确定采用调整配重和温度的方式进行合龙。结合合龙口的连续监测结果,确定钢桁梁通过配重后,在30℃的温度下,先合龙下弦,然后再上弦,最后合龙腹杆及横梁、纵梁的多点合龙方案。实践表明,桥梁合龙精度为±4mm,实现了钢桁梁的无应力合龙。  相似文献   

20.
东新赣江特大桥钢桁梁架设施工技术   总被引:3,自引:3,他引:0  
东新赣江特大桥主桥为变截面双主桁连续钢桁梁桥,跨径布置为(126+196+126)m,主桁采用N形上弦变高桁式。为确保主桥钢桁梁准确定位,针对钢桁梁结构特点,在陆地上设置钢梁预拼场组拼杆件,在水上采用浮吊架设,采取膺架与悬臂法拼装相结合的方案,由两端边跨向主跨拼装,采用边墩顶落梁,并结合顶拉钢桁梁纵移的方法进行合龙。通过调整上下弦横向偏移、高差、纵向偏移等技术使钢桁梁中线偏位、主桁高差、钢梁竖向线形等均得到较好控制,实现钢桁梁高精度合龙。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号