首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考虑道岔区变截面廓形特点的法向切割法,以轨面宽度作为轮轨接触的最大范围,采用最小距离判定原则,基于先验经验的窗口放缩搜索法,准确而快速地寻找到不同横移和摇头角下车轮与岔区钢轨接触时的轮轨接触点。为研究车轮型面的演变对道岔区轮轨接触几何关系的影响,运用法向切割模型及Matlab软件,计算18号道岔转辙器区钢轨廓形与不同服役段的车轮型面匹配时的轮轨接触点对分布、结构不平顺、滚动圆半径差和侧滚角。研究结果表明:随着车轮磨耗的加深,轮轨接触点不断向外侧偏移,轮载过渡位置不断向后偏移,滚动圆半径差为零的点不断向右侧偏移,侧滚角逐渐减小,最终影响列车运行平稳性和安全性。  相似文献   

2.
王健 《铁道建筑》2022,(1):31-34
为提升车辆通过高速道岔时的运行平稳性,基于迹线法建立车轮与道岔钢轨接触几何计算模型,分析车辆通过道岔转辙器时的轮轨接触点对分布特性,发现轮轨接触位置不集中和突变是降低车辆运行平稳性的主要因素。以降低接触突变幅度为原则提出转辙器钢轨廓形打磨方案,并基于轮轨接触几何模型和车辆-道岔多刚体动力学模型,对道岔钢轨打磨的效果进行研究。结果表明:钢轨廓形打磨能有效降低道岔区轮轨接触不平顺和等效锥度,利于提升车辆的运行平稳性;打磨后轮轨横向力、车体横向加速度、脱轨系数的最大值分别降低了39.5%、7.4%、41.7%,该廓形打磨方案对提升道岔服役性能效果明显。  相似文献   

3.
为研究车轮型面演变对高速道岔区轮轨相互作用影响,以某CRH2型动车组和250 km/h 18号高速道岔为对象,基于迹线法原理和三维非赫兹滚动接触理论,计算分析了列车在不同运营里程下高速道岔转辙器区轮轨接触几何特性及接触力学行为特征,研究结果表明:车轮型面演变过程中轮轨接触点对分布状态发生改变,接触点不连续性和跳跃性增大;道岔横向和竖向结构不平顺幅值均发生明显变化,轮载过渡位置延后;车轮磨耗加剧,轮轨接触应力先减小,运营里程达到20万km后开始增大;结构不平顺、轮轨接触应力等指标在列车运营里程达20万km时会发生突变或有极大值。  相似文献   

4.
针对道岔转辙器区钢轨容易出现磨耗和滚动接触疲劳的问题,根据轮轨接触理论,以轮轨法向间隙最小为目标对道岔区钢轨廓形进行优化,获得了钢轨打磨的目标廓形。优化结果表明:优化后的轮轨界面之间有较好的共形特征,能有效降低轮轨接触应力,从而降低轮轨磨耗和滚动接触疲劳损伤,且优化后的轮轨接触点分布更加均匀。  相似文献   

5.
现有的轮轨几何接触点计算方法的求解过程较为繁琐,计算效率较低。结合迹线法构造钢轨廓形NURBS曲线权因子与轮轨接触点的几何关系,提出一种基于BP神经网络的轮轨几何接触点的快速计算方法,实现不同钢轨廓形条件下轮轨几何接触点的快速计算。实例分析表明:训练的人工神经网络能够高效准确地实现轮轨几何接触点的计算。  相似文献   

6.
研究磨耗车轮通过道岔辙叉区的轮轨相互作用特性及控制摩擦因数减缓轮轨磨耗的措施,以CRH2型动车组和18号高速道岔辙叉区为研究对象,基于迹线法原理,计算不同运行里程的磨耗车轮与辙叉区钢轨特征截面的接触点分布。采用UM建立车辆-道岔耦合动力学模型,结合非椭圆多点接触Kik-Piotrowski的轮轨接触算法,计算不同摩擦因数下磨耗车轮通过辙叉区的轮轨动力学变化特性及轮轨磨耗特性。研究结果表明:随着车轮磨耗加剧,岔区轮轨匹配趋向不良,接触点跳跃更为复杂、剧烈,跳跃宽度增大;车轮磨耗初期,轮轨动力学特性有所改善,车轮磨耗对横向力的影响较大;相对于标准新轮,运行里程为20.3万km的磨耗车轮通过辙叉区的轮载过渡位置延后0.134 m;减小轮轨摩擦因数会降低列车通过辙叉区的安全性和平稳性,但有利于减缓轮轨磨耗;当车轮运行里程达到20.3万km时,摩擦因数由0.55分别降低至0.45,0.35,0.25和0.15,钢轨磨耗指数分别下降6.3%,15.5%,34.0%和49.8%,钢轨润滑有利于减缓辙叉区钢轨磨耗,提高道岔区钢轨的使用寿命。  相似文献   

7.
根据基本轨与尖轨的相对位置及轨下支撑方式,分析车轮与转辙器钢轨的接触特性,在考虑尖轨与基本轨相对运动的基础上,提出铁路道岔转辙器部件轮轨两点接触的计算方法,以18号单开道岔为例,对比分析了标准和磨耗车轮LMA踏面与钢轨匹配时的轮轨接触特性,验证两点接触计算方法的正确性和可行性。研究表明:车轮踏面磨耗后,轮轨接触点位置更多的位于尖轨轨距角附近,会增大尖轨的侧面磨耗;车轮踏面磨耗会导致轮载转移的位置后移,增大车辆进入道岔时轮对蛇形运动的距离和幅度,进而导致横向轮轨动力相互作用的增大;磨耗后的车轮踏面,其轮轨两点接触的可能区域分布较为分散,可能造成轮轨接触点的无规律跳跃,从而引起较大的轮轨冲击振动作用。  相似文献   

8.
针对大准铁路小半径曲线钢轨伤损和磨耗严重开展钢轨打磨技术研究,进行打磨模板设计。本文通过分析实测轮轨廓形的磨耗和接触特征,确定钢轨打磨目标廓形,据此设计得到适合于大准铁路小半径曲线的钢轨打磨廓形,并采用重载货车-轨道动力学模型和轮轨接触有限元模型进行理论计算与分析。结果表明:车轮与实测钢轨廓形匹配时,上股易形成过共形接触,下股接触点偏向轮缘根部,形成反向轮径差,降低曲线通过性能;车轮与打磨廓形匹配时轮轨接触状态得到明显改善,轮对冲角、轮轨横向力、脱轨系数、磨耗指数和轮轨接触应力均显著降低,大幅提高了曲线通过性能。  相似文献   

9.
为便于研究轮轨接触的几何关系,将轮轨的直线上接触、曲线上接触和轮轮接触3种典型轮轨三维接触几何计算归结为轮轨直线接触平行投影轮廓和轮轨曲线、轮轮接触旋转投影轮廓的二维接触问题.利用轮对的旋转体特性,分别推导出轮对在不同投影下其底部轮廓的计算公式,给出求解步骤以及适合轮轨三维接触计算的二维同步迭代流程.以S1002CN踏面轮对与60 kg·m-1钢轨的三维接触几何关系为例,仿真分析直线、300m半径曲线及轨道轮半径为900mm的滚动试验台的轮轨三维接触几何情况.结果表明:将轮轨接触点相对于轮对底部母线的偏转角作为计算参数,使得基于投影轮廓的轮轨三维接触几何计算方法简单、易用;直线及曲线线路上的轮轨三维接触几何关系相近,当轮对摇头角小于5~10 mrad时还可用轮轨二维几何关系近似;轮对大横移下的接触点偏转角,在一定的摇头角范围内可视为轮对摇头角的线性函数;二维同步迭代能有效实现复杂条件下的轮轨三维接触几何计算;小横移条件下,轮轮三维接触即具有明显的接触点偏转角,仿真时需要修正.  相似文献   

10.
轮轨接触应力对轮轨磨耗和滚动接触疲劳影响较大,因此精确计算轮轨接触点与接触应力非常重要。本文基于重载铁路轮轨标准型面,利用改进的轮对轴向切片投影法,准确找到轮轨多点接触。引入弹性压缩量,找到接触斑,利用一种精确计算轮轨接触应力的方法求得轮轨法向接触应力,并考虑轮轨摇头角和侧滚角的影响。结果表明:该方法在寻找轮轨多点接触与计算轮轨接触应力时结果较为准确、直接和全面;轮轨接触斑随着轮对横移和摇头角变化,呈现非椭圆形状;一侧车轮轮缘和轨距角处接触,曲率半径较小,轮轨法向接触应力最大值可达3 400MPa,而另一侧轮轨的法向接触应力均小于2 000MPa。在轮对横移量为0~3mm时,摇头角的增加使右轮轨接触斑面积减小,相应的接触应力增大;在轮对横移量为4~9mm时,摇头角的增加使右轮轨接触斑面积增大,相应的接触应力减小;摇头角的增加对左轮轨接触状态有利,但影响不明显。  相似文献   

11.
为提高列车高速直向过岔平稳性,将60N钢轨廓形及新设计的尖轨廓形应用于18号高速道岔转辙器部分,应用车辆-道岔耦合动力学理论,建立模型进行动力学仿真计算,与CHN60高速道岔转辙器动力特性进行对比。仿真计算结果表明:60N高速道岔转辙器部分轮载过渡段起点前移,轮载过渡时间增长;车辆直向经过道岔转辙器时的滚动圆半径差、轮对横移量和钢轨横向接触点外移幅值均减小,轮对蛇形运动幅度减小,行车平稳性得到提高;轮轨最大横向力由6.12 kN降低至4.75 kN,轮轨横向相互作用力减弱;车轮脱轨系数、车体横向加速度略有减小,轮轨垂向力、车轮减载率和车体垂向加速度变化不大,均在安全范围内。  相似文献   

12.
针对我国高速铁路LMA,S1002CN,XP55这3种典型型面车轮与60,60N和60D这3种廓形钢轨匹配的情况,建立车辆—轨道耦合动力学模型,结合等效锥度、Polach指数、轮轨接触带宽变化率和接触点移动速率,分析新轮与新轨匹配和磨耗车轮的型面与钢轨原始廓形在服役条件下匹配的轮轨三维接触非线性关系,研究轮轨接触非线性关系对车辆动力学性能的影响。结果表明:S1002CN型面车轮时轮轨接触点跳跃最明显,LMA型面车轮时轮轨接触点分布最均匀,XP55型面车轮时轮轨接触带宽最窄,而且新轮与60N和60D钢轨匹配时轮轨接触点较60钢轨更集中在轨头中心处;S1002CN型面磨耗车轮与60钢轨匹配时脱轨系数、轮重减载率的相对增长率均大于与60N和60D钢轨匹配时;在1个镟修周期内,S1002CN型面车轮与3种廓形钢轨匹配时,随着运营里程的增加,滚动圆附近轮轨接触带宽和接触点移动速率均增大,且与60N和60D钢轨匹配时Polach指数由正值变为负值,影响车辆的蛇行失稳临界速度、失稳后的蛇行振动幅值以及车辆蛇行失稳极限环分岔特征。  相似文献   

13.
研究目的:道岔侧向通过速度是影响地铁线路运输能力的重要因素,为探明地铁道岔侧向最大通过速度,以某地铁12号道岔为例,基于迹线法和车辆-道岔耦合动力学,结合拉丁超立方随机抽样方法,生成关键动力学参数随机样本,研究标准车轮与标准钢轨和磨耗车轮与实测钢轨匹配的轮轨接触几何特性和车辆-道岔系统动力响应,以及长期运营条件下道岔侧向容许速度。研究结论:(1)轮轨关系演变后,轮载过渡延后;(2)实测轮轨匹配下,道岔侧逆向容许通过速度比轮轨为标准设计状态时低2 km/h;(3)结合长期运营条件下轮轨实际状态,考虑车辆动力学参数的随机性,所分析的12号道岔侧向容许通过速度为55 km/h;(4)针对不同的地铁道岔,均可以通过实测轮轨型面,以及考虑车辆动力学参数的随机性的方法,探明既有道岔的侧向最大通过速度,提升地铁线路的运输能力。  相似文献   

14.
考虑轮对弹性的轮轨接触点算法   总被引:2,自引:0,他引:2  
研究轮对动力学相关问题时要考虑轮对的弹性变形,本文在传统迹线法的基础上发展一种考虑轮对弹性的轮轨接触点计算方法。该方法通过计算滚动圆上的点和该点在轨道上的投影点的法向矢量确定可能接触点,形成接触迹线,根据迹线和轨道型面的垂向最小距离确定最终的接触点。利用该方法,本文建立单轮对刚柔耦合系统动力学方程来求解轮轨接触点,并通过刚性轮对与弹性轮对的计算结果对比,讨论轮对弹性变形对接触点位置和轮轨蠕滑率的影响。结果表明,该方法可有效解决考虑轮对弹性的轮轨接触计算问题。  相似文献   

15.
基于迹线法和车辆-道岔耦合动力学,考虑长期运营条件下车轮廓形磨耗,针对标准及磨耗后LM型车轮踏面和9号直线型道岔,对道岔区轮轨接触几何和车辆侧向通过道岔转辙器的走行性能展开评价,并分析9号直线型道岔的允许通过速度。研究结果表明:标准LM型踏面的轮轨接触关系优于磨耗后踏面,其允许通过速度高于磨耗后踏面。在相同的速度下运行时,标准LM型踏面的安全性,平稳性均优于磨耗踏面。在标准LM型踏面下运行,道岔侧向允许通过速度由车体横向振动加速度控制,为50 km/h;考虑实际运营条件下踏面磨耗,道岔侧向允许通过速度由脱轨系数控制,为40 km/h。  相似文献   

16.
采用铁路轮轨动力学仿真计算软件建立车辆—道岔耦合动力学模型,仿真分析CRH5型动车组侧向通过50kg·m-1钢轨9号道岔的行车安全性和磨耗情况,研究并提出改善高速动车组侧向通过小号码道岔安全性、轮轨磨耗的技术措施。结果表明:在不考虑现场随机不平顺的情况下,CRH5型动车组侧向通过9号道岔时脱轨系数、轮轴横向力的峰值分别达到0.52和28kN,均维持在较高的水平,而且轮轨侧面磨耗功也较大,整体上已经超过了轮轨垂直磨耗功,说明动车组通过岔区时侧磨是轮轨磨耗的主因,建议加强道岔区的养护维修工作,及时消除轨道几何超限现象;另外,通过增大车辆一系悬挂横向刚度或采用60kg·m-1钢轨9号道岔,可以有效地减少轮轨的垂直磨耗和侧面磨耗,起到减缓轮轨磨耗的效果,且后者还可以大幅度提升动车组侧向过岔的安全性。  相似文献   

17.
对轮轨接触几何计算的迹线法进行了深入研究,给出了两种常用坐标系下‘迹线法’的正确计算公式.在此基础上,对轮轮接触几何关系进行了分析,结果表明:轮轮接触点计算并不能像轮轨一样缩减为一维搜索,只能由二维搜索得到,给出了一种简洁的轮轮接触二维搜索算法及公式;同时提供了一种快速搜索轮轨和轮轮接触点的编程方法.  相似文献   

18.
道岔区轮轨力转移与分配特性研究   总被引:1,自引:0,他引:1  
道岔区复杂的轮轨接触状态决定了其轮轨力特性与一般线路相比存在较大的差异。利用空间轮轨接触几何关系理论和Hertz非线性弹性接触理论,研究道岔区车轮与同侧并列的2股钢轨同时接触的2点接触问题。依据2点接触时轮轨弹性压缩量计算每一接触点上的轮轨力,由此确定车辆侧向和直向通过时的轮轨2点接触范围以及轮轨力转移和分配特性。结果表明:2股钢轨上轮轨力转移和分配特性不仅与钢轨外形、轨顶高度和宽度有关,而且与车辆过岔方式有关;考虑轮轨2点接触后的计算方法,消除了单点接触轮轨力计算中轮轨接触点从一股钢轨转移到另一股钢轨上时引起的轮轨力突变,使得轮轨力变化更为平顺和真实。  相似文献   

19.
轮轨多点接触计算方法研究   总被引:1,自引:1,他引:0  
在迹线法基础上进行轮轨接触几何关系计算.结合插值法获得轮轨间距离函数.对其求解一阶和二阶导数,根据该导数的极值点性质以及轮轨间弹性压缩量,导出轮轨多点接触计算与判定方法.以LMA型踏面与CHN60钢轨配合为实例,将新轮、新轨的接触情况与磨耗后的轮轨接触相对比,验证多点接触计算方法的可行性和有效性.研究结果表明:车轮踏面外形磨耗后,轮轨间易发生两点接触.  相似文献   

20.
对国内某地铁线路的车轮磨耗规律进行了现场调查和分析。车轮磨耗集中于轮缘根部和踏面-25~30 mm范围。LM32模板动车车轮踏面磨耗突出区为-8~-4 mm,25万~40万km里程车轮最大磨耗量为2.5~4.0 mm。采用薄轮缘LM30模板镟轮的拖车车轮踏面磨耗集中在-10~10mm范围,19万km以内里程踏面磨耗量为0.2~0.5 mm。利用轮轨接触几何理论和轮轨滚动接触理论,研究不同车轮磨耗状态下的轮轨静态匹配性能,包括接触点对分布和轮轨接触应力,分析车轮表面裂纹的机理。车轮轮缘根部与钢轨轨距角集中接触容易导致接触光带偏向轨距角。轮缘根部及踏面上小曲率半径区与钢轨集中接触是产生车轮踏面接触疲劳的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号