首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决现有排队长度估计方法不能对排队长度进行实时秒级估计的问题,本文采用车联网实时数据,构建基于卡尔曼滤波的实时排队长度估计模型。首先,以当前时刻加入和离开排队队列的车辆数为输入变量构建状态转移方程,以当前排队网联车的数量和渗透率构建观测方程;其次,采用回归模型估计状态转移方程和观测方程的噪声协方差矩阵;然后,提出基于卡尔曼滤波方法估计排队长度的流程算法和模型性能评价指标;最后,基于实际数据构建仿真环境验证模型的有效性。结果表明:当网联车渗透率为30%时,平均绝对误差(MAE),平均绝对百分比误差 (MAPE)和均方根误差(RMSE)的平均值分别为1.6辆,20.9%和2.5辆;当渗透率大于20%时,与基准方法相比,本文模型估计效果更优。  相似文献   

2.
排队长度是城市交通信号控制的重要参数之一。为实时估计交叉口各相位绿灯初始时刻的排队长度,提出一种基于电子警察过车数据并考虑展宽段的排队长度计算方法。本算法考虑上一周期本路段滞留的车辆数,结合上游交叉口各相位驶入本路段参与排队的车辆数,通过时空演化计算本周期绿灯初始时刻的排队车辆数,进而得到相应排队长度值。通过VISSIM仿真软件构建仿真场景验证排队算法,证明本算法具有较好的准确性。  相似文献   

3.
为提高信号交叉口实时排队长度估计精度,判断交叉口实时交通状态,作为交叉口实时信号控制基础。以过饱和交叉口为例,利用磁频检测法,应用车辆到达离散模型及交通波理论研究车辆排队演化过程,实时计算有无专用转向相位两种情况下车辆排队长度,并通过VISSIM和MATLAB仿真软件,验证算法的精度及实用性。结果表明,算法对于工程实用性较强,排队长度实时计算误差在工程应用可接受范围内,左转相位实时排队长度模型相比直行相位排队长度模型而言精度更高。  相似文献   

4.
在智能网联环境下,车辆可通过相互穿插和协作通过交叉口,无需信号灯控制。为保证车辆安全高效运行,建立车辆到达时序和速度协同优化的交叉口车流轨迹优化模型。提出车辆到达时序优化模型和车辆速度优化模型,建立车辆到达时刻与速度的函数关系;在此基础上,模型以所有车辆在控制区域的行程时间与油耗加权最小为目标,车辆路径、到达时刻和速度等关键参数为决策变量,设计迭代式算法求解,实现同时优化车辆到达时刻和速度且交叉口运行效益最大的目的。实验结果表明,与车辆时序和轨迹分别优化的两阶段模型相比,本文模型降低车均延误 32.1%,减少车均油耗9.9%,说明该模型具有良好的主动性和适应性,在降低车辆延误的同时也节省了油耗。  相似文献   

5.
为改善过饱和状态交叉口群的交通控制效果,优化了交通控制目标和结构,制定了信号配时方案优化的实施框架. 在分析溢流、滞留排队和阻挡等拥堵诱因的基础上,根据优化过饱和状态交通控制的需求,选取关键路径上通过车辆数最大和平均排队最小作为优化目标. 在单点交叉口层和交叉口群层间增加关键路径层,优化交通控制结构. 结合过饱和状态交叉口群交通控制特性,提出信号配时方案优化的实施框架及分层优化措施. 南京市广州路交叉口群仿真验证结果表明, 按信号配时优化框架建立的配时算法,可显著增大交叉口群内关键路径的通过车辆数,降低平均排队长度,改善过饱和状态交叉口群交通运行状况.  相似文献   

6.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

7.
为避免车辆在交叉口的急加减速与启停现象,减少车辆燃油消耗和污染物排放,提出了一种考虑二次排队的智能网联车生态驾驶策略。首先构建了考虑驾驶员反应的交叉口处排队车辆的改进IDM跟驰模型,通过信号配时、车辆排队长度等信息估计排队车辆消散时间;其次,依据交叉口处是否出现车辆二次排队,将生态驾驶策略分类为“前方车辆在绿灯时间清空”和“前方车辆二次排队”两种情况,结合智能网联车与交叉口的距离等信息优化车辆行驶轨迹;最后将提出的生态驾驶策略与自由驾驶在不同排队长度场景下进行对比仿真实验。仿真结果表明:相较于自由驾驶,生态驾驶策略能够有效减少车辆的急加减速与停车行为,随着交叉口排队长度的增加,生态驾驶策略的优化效果更加明显;当排队车辆在第一个绿灯时间消散时,采用生态驾驶策略的车辆的总体油耗降低了9.98%,CO2、CO、HC、NOx平均排放量分别降低了11.69%、20.14%、1.66%和29.09%;当交叉口处出现车辆二次排队时,采用生态驾驶策略的车辆总体油耗降低了15.0%,CO2、CO、HC、NOx平均排放量分别降低了15.42%、27.51%、2....  相似文献   

8.
城市信号交叉口交通运行评价参数视频检测   总被引:1,自引:0,他引:1  
针对交叉口排队长度和延误等交通运行评价参数很难直接被检测到的问 题,本文提出了一种基于视频处理的交叉口运行评价参数的综合检测方法.该方法首先 将选择性背景更新机制引入块级背景差分,并结合块级帧间差分实现快速的排队车辆 检测.然后,利用虚拟平行线定位每车道排队车辆首尾端,并结合排队首尾车的跟踪与停 车线处虚拟线圈的计数来检测排队车辆数,进而获得延误、停车次数等其它交通运行评 价参数.实际测试结果表明,该方法能有效实现多参数的同时检测,并且能有效提高检测 的准确率.与实际值比较,参数检测值平均误差小于5%,能较好地满足交叉口运行性能 评价需要.  相似文献   

9.
为了优化单点交叉口信号控制方案,使其适应各个进口道方向交通流动态变化,提高交叉口通行效率,根据交叉口进口道排队车辆数建立有效绿灯利用率模型,提出了一种交叉口自适应控制策略.有效绿灯时间利用率模型以交叉口通行能力最大为控制参数,实时优化确定出最佳相位放行方案以及最优相位切换方案,根据进口道排队车辆最大流向的排队车辆数和车辆到达预测确定相位放行绿灯时间.利用VISSIM交通仿真软件对该自适应控制策略仿真运行,与定时控制以及感应控制对比,评价分析不同车辆到达情况下交叉口通行情况.结果表明:该自适应控制策略能有效降低车均延误,提高交叉口服务水平.  相似文献   

10.
新型混合交通环境下的交叉口交通控制可通过信号灯控制与自动驾驶车辆的轨迹控制协同实现,能够极大地优化道路通行资源利用效率。已有研究中,信号配时与车辆轨迹集中优化的控制策略难以应用于车辆自组织控制的现实场景,且往往计算复杂度较高。本文提出一种无中心框架下基于逻辑的交叉口信号与车辆轨迹协同控制方法。基于协同理论中的快慢变量主动伺服控制原理,设计一种交叉口信号配时慢变量与车辆轨迹策略快变量协同框架,并分别提出基于逻辑的信号配时优化和网联自动驾驶车辆轨迹协同控制方法。协同控制方法可以在车辆自主控制的条件下,一方面,实现交叉口信号配时动态适应交通需求;另一方面,实现网联自动驾驶车辆主动优化驾驶速度,高效通过交叉口。而且网联自动驾驶车辆在进口道可引导混合车队高效通过交叉口,降低绿灯启动损失,提高交叉口通行效率。仿真实验表明,本文的协同控制方法相较于传统控制方法可显著降低交叉口车辆平均延误,同时,基于逻辑的决策模型可实现快速求解。通过对网联自动驾驶车辆控制策略关键参数的敏感性分析,进一步讨论新型混合交通流交叉口通行公平性,并比较在不同网联自动驾驶车辆渗透率下的控制效果。  相似文献   

11.
排队长度是拥挤道路或短距离交叉口交通设计或信号控制重点考虑的交通评价指标之一.针对传统排队长度计算仅考虑单个交叉口交通运行参数的不足,构建了综合考虑上下游交叉口交通运行参数的排队长度计算模型.该模型以交通波理论为基础,综合考虑了上下游交叉口的信号设计、转向流量、路段长度,以及相位差等因素,通过各相位最大排队长度状态点的时空演化计算,得到了交叉口最大排队长度计算方法.经VISSIM和SYNCHRO等交通软件的对比分析表明,模型具有较高的计算精度,可定量分析上下游交叉口各交通要素对排队长度的影响,适用于关联交叉口的交通设计优化或拥挤路段的实时信号控制.  相似文献   

12.
针对过饱和信号交叉口车辆高能耗问题,以信号交叉口整个过饱和交通状态持续时间作为研究时段,利用定数理论分析车辆排队长度、停车次数和通行时间,确定车辆在信号交叉口的减速、怠速、加速和匀速行驶时间,进一步依据车辆在不同行驶状态下的能源消耗率,建立了过饱和交叉口所有车辆第1次停车至通过停车线的平均能耗模型.为了验证模型的准确性,以某个两相位过饱和交叉口为例,对不同交通流量下的车辆能耗进行计算,并将计算结果与VISSIM仿真结果对比分析,结果表明,本文模型对过饱和信号交叉口的车辆能耗分析具有一定的合理性.同时,依据此模型分析了信号配时对过饱和交叉口车辆能耗的影响,说明了优化配时参数对于过饱和交叉口车辆节能具有重要意义.  相似文献   

13.
为建立交通信号协调控制算法并确定其适用条件,考虑车队离散、车辆转出、下游交叉口排队长度3个因素,在分析罗伯逊离散模型的基础上,提出了交叉口协调相位车流到达图式的预测方法,并根据车流到达时刻与协调相位绿灯启亮、结束时刻的关系,建立了协调相位车流延误的计算模型;以交通控制子区内各交叉口协调相位车流总延误最小为优化目标,以相位差为优化变量,设计了信号协调方案优化算法.仿真结果表明:与改进数解法相比,该算法降低了协调相位车流延误7.4%;随着交叉口间距、转出车辆数、下游排队长度的增加,信号协调控制效益逐渐下降.   相似文献   

14.
信号交叉口车辆集结与消散分析   总被引:5,自引:0,他引:5  
从流体力学宏观模型出发,通过对信号交叉口交通波分析,应用Greenbergv-k模型推导出交叉口排队长度及消散时间计算公式。针对不同的入口车辆到达率对信号交叉口的车辆集结与消散作了定量分析和计算。  相似文献   

15.
为了更准确地描述城市道路交叉口交通流演化规律,以具有进口道展宽设计和合用车道功能设计的信号控制交叉口为研究对象,综合考虑排队消散过程、分流过程、可选择性换道和合用车道4个现实因素改进了元胞传输模型(CTM);结合交叉口的几何特征,以车道组为单位提出了路段元胞划分方法;在此基础上,调整了元胞发送能力函数对排队的消散过程,并进行了建模;在分流过程建模中引入阻塞因子来描述不同车道组空间排队的相互影响,以平衡相邻车道组空间排队为目标对过渡区可选择性换道行为进行了建模,并在合用车道建模中考虑了不同流向车流的冲突效应;结合实际交叉口,选取车道组周期最大排队长度作为评价指标,验证了改进CTM的有效性。试验结果表明:改进CTM可以同时估计不同车道组的排队长度,随着直行车流比例的增大,改进CTM的估计误差逐渐减小,不同流量场景下,路段最大排队长度的平均绝对误差(MAE)、均方根误差(RMSE)和加权平均绝对百分比误差(WMAPE)的平均值分别小于16.43、21.36 m和13.51%;与基准方法相比,不同场景下改进CTM对路段最大排队长度的MAE的减小幅度为15.31%~90.03%,且在高流量场景下...  相似文献   

16.
为解决信号交叉口运行效率评价方法偏理论化、实用性不强等问题,以出租车、公交车、驾图 (车联网)多源GPS轨迹数据为基础,充分利用车辆减速、停车、加速等连续速度变化特征及位置信息,提出交叉口个体车辆排队长度、通行时间、停车次数等交通参数提取技术。基于此,构建以信号交叉口运行指数为一级指标,车辆平均通行时间,第95%分位排队长度,两次停车率为第二级指标的评价指标体系,基于高斯混合聚类模型对综合运行指数进行分级量化,最终确定五级服务水平评价标准。实例表明:采用本文方法能够比较准确地反映不同时段交叉口各转向、进口道及交叉口整体运行水平,最大排队长度与实际相对误差约15%左右,优于仿真结果;除样本不足情形以外,服务水平评价结果比仿真更贴近实际运行情况,验证了本文方法的技术可行性及评价结果的客观真实性。  相似文献   

17.
对比现有交叉口主要控制方式的控制原理及优缺点,根据环形交叉口交通流特性,兼顾当前绿灯相位车辆到达情况与红灯相位车辆排队长度,提出相位相序可变的环形交叉口模糊自适应控制模型。  相似文献   

18.
为了提高网联信号交叉口车路协同控制对真实交通环境的适应性,以智能网联汽车与网联人工驾驶汽车混行的典型交通应用场景为研究对象,通过构建八相位网联信号交叉口,研究了混行环境下的交通信号和网联车辆轨迹车路协同优化控制方法;在对场景中的网联车辆运动学特性和跟驰行为进行建模的基础上,构建了一种混行车辆编队方法;基于混行车队模型、安全约束与燃油消耗模型,建立了基于滚动优化的交通信号-车辆轨迹协同优化控制方法;基于异步分层优化思路,将该协同控制问题分解为上层交通信号优化与下层车辆轨迹优化两方面,以交叉口车辆行驶延误时间和燃油消耗量为优化目标,利用遗传算法和“三段式”轨迹优化法分别对交通信号优化问题与车辆轨迹优化问题进行求解;对不同稳态车速与智能网联汽车渗透率下构建的混行交通流的稳定性进行了验证,并通过仿真测试分析了所提出的协同优化控制方法的控制效能与关键参数对控制效能的影响。分析结果表明:在不同交通流量与智能网联汽车渗透率下,提出的控制方法均可有效提升交叉口通行效率与燃油经济性;在完全渗透环境下,较固定配时交通信号控制方法最高可分别提升57.3%和13.3%;随着智能网联汽车渗透率的增加,其控制效能不断提高,较无渗透条件最高可分别提升42.0%和14.2%;即使智能网联汽车渗透率仅达到20%,较无渗透条件也可以在交通效率方面实现20.4%的显著改善;较长的交通信号周期与较短的网联人工驾驶汽车驾驶人反应时间有助于协同控制效能的提升。   相似文献   

19.
基于竞争-合作的群体决策机制,将单点信号优化构建为各相位的交叉口通行权的竞争过程,将多点协同构建为上下游相位之间的协作过程,提出了一种兼顾多交叉口协同效益和单交叉口控制优化的路网信号配时设计方法;利用车路协同环境下路网内车辆路径信息的可感知性,动态精准地量化解析上下游交通耦合关系;在此基础上建立了分层动态决策框架,在单层决策中剥离了上下游交叉口控制决策对本地决策的影响,解耦协同控制模型中路网交通状态和信号控制决策之间的复合关系;设计了基于交叉口内各交通流向竞争力的分布式信号配时决策算法,并通过仿真试验平台比较了群体决策协同控制方法与传统协同控制方法的控制效果。研究结果表明: 相较于传统协同控制方法,群体决策协同控制方法可动态适应路网交通需求,在交通效率和稳定性上具有显著优势,在不同饱和度的交通需求水平下可降低车均延误15%以上;在路网交通饱和度较高的情况下, 群体决策协同控制方法延误降低幅度可达19.2%,控制优势更加明显;由于群体决策协同控制方法可在下游交叉口进口道车辆排队过长时减少上游车辆流出,可降低路网最大排队长度超40%,有效规避路网溢流风险;通过对群体决策协同控制模型的分布式求解,可实现单次决策过程计算时间小于0.01 s,具有应用于大规模复杂路网的实时信号配时决策的潜力。   相似文献   

20.
为使智能网联汽车(intelligent connected vehicle, ICV)在复杂交通环境下高效、安全地通过信号交叉口,在车联网实时获取信号灯和前车状态信息的基础上,建立了智能网联汽车通过信号交叉口的驾驶行为决策框架. 通过跟驰模型推导智能网联汽车和前方车辆在未来的行驶状态,预测得到前方车辆是否要通过交叉口的行为,进一步分别对智能网联汽车是领头车和跟随车时通过交叉口停止线的条件进行判断;将换道加入到驾驶方式中来寻求更高的通行效率,用基于换道时间模型的方法判断智能网联汽车换道后的通过条件;仿真对比分析了所提出模型和现有模型的决策能力,讨论了影响决策过程的关键因素. 研究结果表明:相比于现有模型,综合信号灯和前车行驶意图的决策方法能够提高智能网联汽车对通行条件判断的准确性,从而进行更合理的行为选择,随着单位绿灯剩余时间的增加,车辆决策通过交叉口的概率可提高20%,当前车道的车辆位置对决策结果影响显著.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号