首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
正大型客车多采用鼓式制动器,其结构简单,易于维修。鼓式制动器的制动作用是由制动蹄摩擦片与制动鼓间的摩擦阻力来实现的。大客车在运行时,制动鼓是旋转运动体,制动蹄摩擦片则安装在固定于车桥的制动底板上。制动时,制动蹄摩擦片张开压向制动鼓,与制动鼓的旋转产生相反作用力即蹄鼓摩擦阻力距,进而产生制动器制动力。影响制动  相似文献   

2.
根据矿区作业环境及满足车辆制动力矩需要选择前轮盘式制动器,通过收集关于制动器要求数据,确定选用钳盘式制动器,且制动钳装在盘后方。该制动器装有液压轮缸,通过液压作用推动制动块的摩擦力阻止制动盘运动,从而制止传动轴运动,达到制动效果。通过设计合适的感载比例阀以及ABS系统来调节制动力大小,防止车轮抱死。  相似文献   

3.
本文针对无人驾驶汽车制动系统的特点和使用条件,分析了多种可用于制动摩擦片背板的新型材料,进行了轻量化制动摩擦片背板的设计,为无人驾驶汽车制动器设计提供了一套较为完整的解决方案。  相似文献   

4.
正同鼓式制动器相比,盘式制动器有散热条件好、制动效能稳定、热衰减小、维护检查方便等诸多优点。随着技术和工艺的进步,以压缩空气为制动介质的盘式制动技术已日渐成熟,在大型客车和货车上得到了越来越广泛的应用。1盘式制动器的结构特点盘式制动器通常由旋转的带轮毂的制动盘和固定的制动钳组成;制动时,制动钳中的摩擦片在促动装置的作用下,与旋转的制动盘发生摩擦,产生摩擦力矩、阻碍制动盘的旋转,产生制动作用。根  相似文献   

5.
基于ANSYS Workbench及APDL的鼓式制动蹄有限元分析   总被引:1,自引:1,他引:0  
根据某鼓式制动器制动蹄的实体模型,运用ANSYS Workbench建立其三维有限元模型.通过对其实际工作情况的分析,在销孔处进行适当约束,在滚轮孔内壁上施加合理的促动力.为了较为真实的模拟其所受的正压力及相应摩擦力,在ANSYS Workbench环境下引入APDL语言,得到了制动蹄的应力场分布,此方法可方便快速的实...  相似文献   

6.
湿式制动器的制动噪声产生机理与其摩擦介质的黏滑振动特性有关。为了研究摩擦系数对制动噪声的影响,建立了摩擦系数的分形几何计算模型,将摩擦系数作为变量,分别在忽略与考虑接触斑点的微粒间相互作用时,分析摩擦系数的变化对系统不稳定的影响趋势。在这两种情况下,系统的不稳定趋势完全不同。由此得到了多个参数影响系统的稳定性,在研究湿式制动器制动噪声的时候需要匹配各个参数,使制动系统趋于稳定。  相似文献   

7.
城市道路路口多、公交站点密、客流大,公交车辆需要进行频繁的制动。制动器在长时间频繁的工作情况下,会使制动性能大幅下降。为减轻制动器的【作负荷,提高制动的可靠性和耐用性,我们在公交车上装用了电涡流缓速器。通过跟踪比较,安装的缓速器使用效果良好,有效降低了制动系统材料消耗,提高了车辆安全陛。  相似文献   

8.
电涡流缓速器作为一种辅助制动系统的重要方式,正越来越多的被应用在大型客车、中、重型卡车上。它利用电磁感应原理,产生强大的非接触式制动效能,并且不需要使用行车制动器就能减缓车辆的行驶速度,增强车辆的可靠性和安全性,也使制动鼓和摩擦片的使用寿命大大延长,从而减少汽车的运行成本,提高用户的经济效益。是目前较为理想的缓速“安全制动”方式。  相似文献   

9.
正公交车(大型客车)利用压缩空气来驱动制动器工作,双管路气制动系统是客车的主要制动型式。而由手制动阀控制,通过弹簧制动气室储能弹簧释放势能,推动后轮制动调整臂来实现制动器制动的是驻车制动。出现行车制动失灵的紧急情况时,也可通过控制手制动阀实现应急制动。鞍山公交所用气电混合动力车型的辅助制动为驱动电机缓速,常规条件下的非紧急制动,只需松开油门,轻踩制动踏板即可,以利于电机产生缓速制动功能,而不能  相似文献   

10.
<正>车用盘式制动器俗称制动钳,也叫蝶式制动,具有结构简单、保养方便、热衰耗小、制动噪音小、涉水性强等优点,很多公交车已经采用,效果良好。我集团下属客运公司于2012年开始陆续在营运公交车上配置了盘式制动器,总体使用情况良好,但有些情况却不容乐观,特别是在批量配置的车辆经过三保更换制动分泵后,制动器的故障突然明显升高,经检修、统计发现,大多是盘式制动器的自调机构进水导致该机构锈蚀损坏造成的,最终导致整个制动器失效。事实上,盘式制动器的很多故障与保养维护有关,  相似文献   

11.
电涡流缓速器作为一种辅助制动装置,是在车辆现有的制动系统中,增加一套能独立作用于车辆传动系统,使车辆安全减速的制动装置。它可提前于常规制动器工作,使车辆平稳减速,并承担大约70%-80%制动能量。  相似文献   

12.
基于ANSYS Workbench的鼓式制动器的接触分析   总被引:4,自引:3,他引:1  
运用ANSYS Workbench平台建立了某鼓式制动器的三维有限元模型。对摩擦衬片与制动鼓之间的摩擦接触进行模拟,考虑了制动鼓和摩擦衬片间的滑动,较真实的模拟了制动的工作过程。研究了制动力矩在制动过程中的变化规律,反算出制动效能因素,得出促动力重新分配后接触压强的分布特性及制动器的等效应力。为进一步改进制动器结构设计提供了依据。  相似文献   

13.
发动机制动失效的坡长临界值计算   总被引:2,自引:0,他引:2  
为有效降低连续长下坡路段汽车交通事故率,增强车辆行驶的主动安全性,研究了在发动机制动下汽车下坡制动失效的坡长问题,通过在汽车试验场进行汽车平路制动试验,测得汽车紧急制动时制动鼓温升变化数据,以最小二乘法建立了汽车主制动器制动鼓温升模型,推导了在山区不同长纵坡路段,发动机制动下汽车主制动器制动失效的坡长临界值。计算结果表明在5%坡道上,维持40 km.h-1的安全稳定车速,采取Ⅲ档发动机制动时,汽车主制动器制动失效的坡长临界值前轮为15 263 m,后轮为12 368 m,既满足了行驶的距离要求,又满足了运行速度要求,是一种可行的安全下长坡驾驶方式。  相似文献   

14.
制动条件下平均摩擦系数计算方法的比较   总被引:1,自引:0,他引:1  
针对合金钢盘与铜基摩擦材料构成的摩擦副,利用缩比惯性试验台,在转动惯量46 kg·m2条件下,进行了不同工况制动试验研究,并采用UIC标准和中国标准计算平均摩擦系数.结果表明:随着制动初速的升高,两种方法计算的平均摩擦系数差别增大.这是因为制动初速度较低时,摩擦系数在整个制动距离分布差异较小,且平均摩擦力与瞬时摩擦力差别不明显,两种计算方法得出的结果均集中在制动中期,差别较小.当制动初速度较高时,摩擦系数集中分布在制动初期,UIC标准计算结果偏向于制动初期的摩擦系数;制动初期摩擦力明显低于平均摩擦力,中国标准计算结果偏离制动初期的摩擦系数,两种计算方法得出的结果差别较为明显.  相似文献   

15.
依据鼓式制动器结构特点和传热学理论,分析了鼓式制动器生热散热过程,运用有限元软件ANSYS建立某鼓式制动器瞬态温度场仿真模型,得出在重复制动工况下制动鼓的温升过程,分析了瞬态温度场的变化情况。根据国家标准进行热衰退试验,通过修改仿真模型的热边界条件,使仿真温度曲线与试验曲线相吻合,确定了鼓式制动器瞬态温度场分析的边界条件及模拟方法。  相似文献   

16.
为研发一种公路用交互式热成像货车制动安全预警系统,以提高公路连续长大下坡路段主动安全性,提出了一种从公路侧向热像温谱中捕获货车侧面热像,并进而提取货车制动器温度的算法。采用高频红外热像仪获取了公路侧向热像温谱,并分析了其中的潜在特征;根据热像温谱特征,利用矩阵分析法提出了货车制动器温度的提取算法。应用算法软件进行提取的结果表明:在自由流交通状态下,算法可以实现对超过98%的货车制动温进行准确提取,提取结果可以作为货车制动安全预警系统中的安全信息使用。  相似文献   

17.
针对大兆瓦风电制动器制动过程,考虑制动摩擦副作用区域宽度及其影响下的线速度径向差异,提出速度梯度循环法,对制动过程摩擦副进行热-结构耦合分析.基于ANSYS软件建立制动器摩擦副三维瞬态传热有限元模型,运用速度梯度循环法推导出热流密度的加载式,用以计算制动过程中产生的摩擦热流,对制动区域温度场进行数值模拟.从分析结果表明制动闸片摩擦区域温度分布在制动盘径向呈现弧度明显的等温分布,温度梯度随半径增大而增大.以速度梯度循环法将热分析结果代入结构场对闸片摩擦区域受力及变形进行耦合分析并预估其磨损状况.通过与传统均匀加载方法对比发现使用速度梯度循环法的分析结果与实际更为接近.所提出的分析方法为模拟大尺寸盘式制动器的摩擦制动过程提供参考.  相似文献   

18.
文中所述的鼓式制动器鼓内强制风冷系统,可满足汽车因重载下长坡、陡坡需要频繁制动时制动器的散热需求,提高了鼓式制动器在频繁制动时的工作可靠性,有效地降低了因制动器出现制动效能热衰退而引发交通事故的可能性,它是一种行之有效的抑制鼓式制动器制动效能热衰退的技术。该强制风冷系统可自动适时地工作,能耗少,重量轻,不增加行车风阻,不会影响原有的制动效能,应用时,安装方便,成本低。  相似文献   

19.
轮式装载机制动系统的主要故障是制动性能降低,各车轮制动性能不一致,严重时会出现制动失效。其具体故障有:制动失灵或失效、制动时机械跑偏、制动拖滞和制动器异响。  相似文献   

20.
为了预测极靴服务寿命,确保制动可靠,通过磨损过程、制动过程、制动器/钢轨温度场的建模与仿真,计算了高速列车紧急制动过程中电磁式磁轨制动器极靴磨损量;建立了考虑速度与温度的Archard磨损模型和CRH2列车紧急制动过程的动力学模型,计算了电磁式磁轨制动器样机全程参与制动时的空气制动力、电磁制动力、制动减速度、紧急制动能量分配系数、瞬时速度和制动距离等时变参数;分析了紧急制动时电磁式磁轨制动器-钢轨-大气间的热量传递,基于Fluent软件建立了制动器/钢轨的三维温度场模型,根据制动过程时变参数获取温度场热流密度和散热加载条件;针对CRH2列车行驶速度为250km·h-1的紧急制动工况,计算了制动器极靴的磨损量。计算结果表明:在制动过程中,钢轨顶部温度随着与制动器的接触状态变化呈波动变化,在距离有效制动起点1 620m处,钢轨与8号电磁式磁轨制动器接触结束时,温度达到最大值570.76℃;CRH2列车同侧8个制动器极靴底部在制动时间为24.5s时温度达到最大值,从前到后依次为1 022.6℃、1 037.7℃、1 045.3℃、1 052.8℃、1 085.7℃、1 100.9℃、1 109.2℃、1 124.4℃,极靴磨损量从前到后依次为207.4、208.7、210.0、210.7、212.1、213.4、214.4、215.5g。可见,制动器工作会使钢轨产生热量积累,导致列车运行方向后面的电磁式磁轨制动器极靴温度较高,磨损量较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号