首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
唐鹏  王海龙  黄旭 《隧道建设》2011,(Z2):223-228
重庆轨道交通六号线一期冉家坝车站开挖深度约41 m,主体全长227.4 m,宽29.46 m,为地下5层局部6层岛式明挖车站。车站设计工程量大,施工风险高,质量要求高。以工程结构设计和施工方案为依托,以重庆轨道交通六号线一期冉家坝车站主体结构高大模板施工为例,通过研究地铁车站结构成型施工主要特征及施工影响因素,提出对应的施工方案及技术解决措施,确保了车站结构质量和外观质量。  相似文献   

2.
《公路》2021,(5)
文中研究以某快速路项目为依托,设置两个试验段,在边坡坡面向内2m区域分别松铺4.5m、8m土石混合填料,填筑后进行强夯加固,以探讨研究土石混填高路堤的快速施工技术和方法。对强夯后的路基反开挖,并进行了压实度和承载力检测。通过试验段检测数据分析可知,松铺4.5m试验段的压实度和承载力基本可以达到设计要求,部分压实度稍不理想。在后续施工中,可采用将上下两层夯点错开设置的方法有效避免夯棱压实度欠缺影响,达到土石混填高路堤的快速施工和经济安全的目的;但在路基一级边坡即路面以下8m范围内建议采取分层填筑、分层碾压的施工工法。而松铺8m试验段的压实度和承载力不能满足设计要求。  相似文献   

3.
邓尤术  杨永祥 《隧道建设》2012,32(2):197-200
在大跨径地铁车站TBM与暗挖交叉施工中,为最大程度地减小车站施工与TBM施工的相互影响,使车站和TBM均能安全、连续不中断地施工。以重庆轨道交通六号线红土地车站为例,采用TBM从下部掘进过站后再进行上部核心土开挖,先施作拱部二次衬砌混凝土,再进行下部开挖及边墙衬砌施工,即大跨径暗挖车站采用先拱后墙的施工方法。通过设置临时仰拱,在施工过程中加强对各部位的监控量测。实践证明:通过先拱后墙的施工方法,很大程度上减小了车站施工与TBM施工的相互影响,保证了TBM硐室及车站拱部的施工安全和施工质量。  相似文献   

4.
刘立 《路基工程》2006,(3):102-103
广州地铁二号线市二宫站是8 m无柱岛式站台的车站,具有独特的建筑风格及高难度斜推刚构体系的结构形式。车站宽度小,一般应用于缓解车站在施工期间对地面道路交通的影响,公共区内无柱、车站的跨度大,公共区空间开阔。与暗挖施工方法相比,造价可大幅度降低。为以后的广州地铁二号线4座大跨无柱车站提供了设计借鉴。  相似文献   

5.
针对道路压实度问题,根据长期施工实践和大量试验与检测数据分析,对道路压实形成的内在机理,不同土工混合料的最大干容重与含水量之间的关系进行了分析研究,通过广泛采集检测的压实数据所表现出的反常与失真现象,提出了影响道路压实质量的主要因素,施工检测中应掌握的压实度分析方法。  相似文献   

6.
浅析路基压实度的控制技术   总被引:1,自引:0,他引:1  
由于压实度是公路路基施工质量检测的关键指标之一,因此如何获得符合设计要求的压实度.保证路基施工质量,是施工单位应重视的问题。通过分析发现,含水量、地基强度和填料等因素会对路基的压实度产生影响。最后提出了一些用于控制压实度的方法。  相似文献   

7.
王宁 《隧道建设》2015,35(5):443-448
根据经验,第四系地层中暗挖地铁车站的埋深常常设置为6~8 m,若车站隧道拱部位于界面水影响范围,则车站施工采用常规支护手段难以保证安全。为了有效规避暗挖地铁车站在富水界面时的施工风险,结合北京地铁9号线军事博物馆站设计过程,通过现场抽水试验和计算分析,提出设计阶段应重视水文地质研究,选择车站合理埋深使其拱顶避开界面水影响范围,提高施工安全性。车站拱部留设的防水保护层厚度据水头高度和隧道开挖跨度确定为4.5 m;施工过程中应加强超前探测,结合探测结果设置帷幕注浆或自进式锚杆等拱部超前支护措施。埋深加大后结构钢管柱应根据受力情况进行加强。  相似文献   

8.
为了有效地为设计复核和施工质量控制提供参考,对二郎庙水库沥青混凝土堆石坝高程为639.00m的堆石料取样进行室内试验。研究了堆石料取样的颗粒级配、渗透性、压缩性及剪切强度,提出了合理的堆石料级配范围和压实度控制干密度,论证了建议级配范围内的堆石料具有良好的抗渗稳定性和力学性能。结果表明,堆石料质量可靠,可直接用于坝体填筑。研究成果可为同类工程中堆石料的设计施工提供参考和借鉴。  相似文献   

9.
结合具体试验路段,从材料选择、级配设计、不同机械组合及碾压方式几方面,研究了级配碎石基层施工的压实特性和提高压实强度的方法,总结了级配碎石的压实特性,探讨了级配碎石施工与质量控制。  相似文献   

10.
为提高沥青路面施工质量,防止因压实温度的不合理导致的压实不足或压实过度,从而引起渗水、车辙或泛油、失稳等问题,本文通过现场试验和室内马歇尔试验对影响压实度的变异性因素进行了分析,研究发现在合理的碾压范围内,温度越高压实度越好,且复压的碾压温度和碾压遍数对压实度的影响最大。  相似文献   

11.
基于某在建高速公路填土路基振动压实试验,运用ABAQUS有限元软件进行数值模拟,通过单因素与灰色关联法分析压实度变化规律,研究填土路基振动压实作业参数和填土材料性质对压实效果的影响.研究表明:采用32t振动压路机相比于22t最终路基压实度提高3.7%左右;填土模量的提高能提高压实效率,但对路基最终压实度影响较小;填土与...  相似文献   

12.
粗粒混合土具有颗粒级配和均匀性差的特点,难以用作变形要求高的建筑地基。结合海拔4300余米的西南某重点工程项目,采用振动碾压、冲击碾压和强夯的方法对原粗粒混合土抛填地基处理和高填方填筑体进行了压实试验。通过颗粒分析、压实度测试、动探、载荷试验、波速试验等检测表明,中高能量强夯可有效破碎工程区粗粒混合土填筑体中碎石,使填筑体颗粒级配变好,密实度显著提高,处理后填筑地基物理力学性能良好,达到了高填方地基稳定、均匀和密实的要求。同时提出了粗粒混合土大面积填筑工程质量控制应采用施工控制和地基检测相结合的方法,且地  相似文献   

13.
依托高速铁路建设工程质量监督检查的长期实践,系统分析了路基工程水泥级配碎石填筑质量的控制程序,提出水泥级配碎石压实质量应“内在密实、板结良好”的定性评价标准并纳入现行验标中执行;通过对水泥级配碎石填筑实体的钻芯取样,探索芯样抗压强度和完整性与水泥级配碎石填筑质量之间的关系,提出评价水泥级配碎石填筑质量新指标。  相似文献   

14.
以某高填方工程为背景,对碎石填料进行了试验研究,分析了碎石填料的可填性及击实指标。在试验段施工过程中,研究了冲压施工参数与填料压实质量之间的关系,提出了与目标压实度对应的施工参数。通过多个试验小区对该施工参数进行可靠性分析,并利用数理统计方法对填料压实效果进行总体评价,证实了施工参数法可有效评价填料的压实质量。  相似文献   

15.
为探索煤矸石填筑路基的合理碾压方式,以青兰高速邯涉段工程为依托,采取煤矸石路基填筑冲击压实与普通振动压实后冲击增强补压两种碾压方式铺筑试验路,分析研究了煤矸石路基冲击压实施工关键技术。并建议采用压实度、煤矸石级配变化和压碎值三项指标进行试验段施工质量控制检验。  相似文献   

16.
吹砂填筑路堤具有施工速度快、成本低、不受雨季影响、节约土源等优点。结合滨江大道工程采用吹砂工艺进行路堤填筑,对高路堤吹砂填筑的施工流程、施工排水系统、吹填砂的压实工艺、密实度检测、施工监测、边坡防护等进行了介绍和探讨。实践表明,因地制宜地采用吹填砂技术填筑路基,可取得较好的工程效果。  相似文献   

17.
李琳 《城市道桥与防洪》2012,(12):171-173,16
为评估强夯置换施工对周边油气管道的影响,结合大亚湾石化区强夯置换加固路基工程,在试验路段(周边无油气管)布置了位移边桩、测斜管和强夯振动监测点。利用全站仪测量了地表变形情况;数字测斜仪测量了土体内部的侧向变形情况;振动测试仪记录了强夯施工时地表监测点的振动曲线。试验结果表明:深层侧向位移在2~4 m深度范围内衰减较快,5 m以下深层侧向位移基本为零;强夯置换振动的影响范围为25~30 m。对位移和振动的监测数据的分析,可知在5 000 kN.m的夯击能时:强夯置换施工的影响范围为25~30 m。  相似文献   

18.
以陕西省西咸北环线高速公路工程西吴枢纽立交C匝道路基填筑试验段为依托,研究了建筑垃圾作为路基填料的基本物理性质,结合现场施工分析了建筑垃圾填料压实性能的影响因素,建筑垃圾填料含水率对压实度的影响,合理的碾压遍数及现场建筑垃圾路基回弹模量。结果表明:建筑垃圾填料含水率控制在14.8%~15.0%时,碾压效果最好,碾压遍数超过20次后,压实功对填料的压实效果已不显著。建议超过15遍碾压后,当压实效果趋于平稳时可停止碾压,此时路基回弹模量为155~170 MPa,相应的压实度为97.87%~98.46%。  相似文献   

19.
针对过湿土因天然含水量高而不能直接用于填筑路基的问题,提出过湿土分层片石摊铺处治技术,并对施工方法和处治效果进行现场填筑试验研究。采用沉降观测和探坑检测2种方法对填筑施工质量进行检测,测试结果表明,当碾压10遍后,沉降趋于稳定,过湿土部分嵌入片石层,两者结合紧密,路基整体填筑质量密实。  相似文献   

20.
汪洪加 《路基工程》2013,(6):143-145
以成渝高铁工程为依托,对细粒砂岩填料的料源选择、生产方式、填筑工艺、压实质量检测、沉降观测等进行研究。结果表明:可选较软及硬质砂岩加工A,B组填料。施工过程中应严格控制填料含水量,在最佳含水量范围内,填层碾压质量可达到规范要求;在最佳含水量范围外,增加碾压遍数,会使压实层表面填料二次破碎形成细砂层,压实质量变差;使用细粒砂岩填料填筑路基,在碾压遍数较多、堆载预压情况下,沉降稳定时间约6个月,应加强施工组织的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号