首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
厦漳跨海大桥北汉主桥为主跨780 m的连续钢箱梁斜拉桥,标准梁段长15 m,宽38 m,节段最重361 t.墩顶区共9节梁段,均采用活动支架辅助不变幅架梁吊机吊装施工,解决了浅滩区浮吊无法作业的难题;边跨合龙采用斜拉索超张拉辅助悬臂拼装施工,避免了合龙口观测、合龙段姿态调整及合龙口临时连接等大量工作,降低了施工难度,提高了匹配精度和成桥线形质量;中跨合龙采用顶推辅助配切法施工.  相似文献   

2.
沌口长江公路大桥主桥为(100+275+760+275+100)m双塔双索面钢箱梁斜拉桥,钢箱梁含风嘴宽46m,中跨合龙段长4.6m、重122.4t。该桥中跨采用单侧起吊、顶推辅助合龙方案,即北岸侧塔梁纵向临时约束兼顾作为纵向顶推装置顶推北主桥,由南岸桥面吊机单侧起吊合龙段进行喂梁。合龙施工时,结合合龙段起吊操作间隙、喂梁温度对合龙口宽度的影响等,纵向顶推装置的顶推量按20cm、顶推力按6 000kN设计;针对顶推过程中结构响应,通过支撑型钢将合龙段重量平均分配至合龙口两侧梁段上、斜拉索张拉调整合龙口相对高差、对拉系统进行轴线调整、纵向牵引辅助进行缝宽调整和锁定等技术措施,完成合龙口姿态调整;合龙段匹配时,以边腹板对齐,中腹板处马板配合千斤顶进行匹配错台控制。全桥合龙后,合龙段轴线偏位5mm,标高与目标值的误差为2mm,合龙段与两侧标准段匹配良好。  相似文献   

3.
武汉青山长江公路大桥主桥为主跨938m的双塔双索面斜拉桥,主梁采用混合梁结构。其中,边跨主梁采用钢箱结合梁;中跨主梁采用整体式钢箱梁,钢梁宽48m、高4.5m。中跨钢箱梁共59个节段,其中合龙段长11.4m,重约305t,节段间采用栓焊组合连接。大桥先施工边跨钢箱结合梁,再施工中跨钢箱梁,最后采用顶推辅助合龙方案施工中跨合龙段。合龙段在工厂精确匹配制造后运至桥位处,将合龙口一侧主梁往边跨侧顶推15cm,利用2台500t桥面吊机抬吊合龙段嵌入合龙口;完成合龙段与一侧钢梁的栓焊连接后,再将钢梁往跨中顶推复位;利用预设的三向偏差调整装置调整合龙口偏差并锁定,先栓后焊完成合龙,解除临时锁定,实现大桥体系转换。  相似文献   

4.
厦漳跨海大桥北汊主桥为双塔双索面钢箱梁斜拉桥,主梁采用悬臂拼装施工,中跨合龙方案采用配切-顶推合龙技术:在合龙前对合龙口进行观测,并拟合出合龙口宽度~温度曲线,根据预测的合龙口宽度对合龙段下料,同时在塔梁临时锚固上对单侧主梁顶推和回移一较小位移.实践证明,该桥采用的配切-顶推合龙技术既能确保合龙段顺利吊入合龙口,又能达到理想的焊缝宽度,提高了合龙的可靠性,降低了结构安全风险.  相似文献   

5.
荆岳长江公路大桥中跨合龙施工技术   总被引:1,自引:0,他引:1  
荆岳长江公路大桥主桥为跨径布置(100+298) m+816 m+(80+75+75)m的混合梁斜拉桥,主梁由扁平钢箱梁和分离式混凝土边箱梁组成,中跨钢箱梁合龙段长16.4m,重305 t,采用2台桥面吊机抬吊施工.该桥中跨合龙采用半配切半顶推的施工方案,通过统计方法预测合龙温度为22℃,在此基础上考虑多种因素影响,精确计算合龙段无应力下料长度为16 454.4 mm,将合龙段在工厂精确匹配预制,设置牵引装置调整合龙口宽度,采用逐缝调整合龙缝宽度的方法进行合龙段位形调整,最终顺利实现中跨的高精度合龙.实践证明,采用该合龙施工技术能减轻对合龙温度的依赖,缩短合龙施工时间,提高合龙施工精度和质量.  相似文献   

6.
广州明珠湾大桥主桥为(96+164+436+164+96+60) m中承式钢桁拱桥,采用双层桥面布置,主梁采用N形三主桁钢桁梁结构。主桥采用斜拉扣挂法、拱梁同步架设;中跨合龙时,拱肋与主梁分别采用"多点同步合龙"与"节点拼装合龙"法进行先拱后梁施工,以提高大桥的合龙效率。通过敏感性分析确定该桥采用26号、29号墩顶、落梁为主,竖向、横向、纵向顶拉为辅的合龙措施调整拱肋合龙口空间姿态。该桥中跨合龙施工中,在边跨采用抗倾覆压重设计,以控制大桥悬臂施工阶段由自重产生的倾覆力矩;在26号、29号墩顶支座处布置顶、落梁及纵移装置,以消除合龙口高差与转角位移,实现精准对位;在拱肋与主梁合龙口设置微调装置,以实现钢梁合龙口间距微调;在27号主墩设置顶推装置,使结构整体纵移0.085 m,实现上、下拱肋同步合龙;主梁合龙节点杆件拼装后,利用吊杆与顶拉装置调节高差与合龙口间距,实现大桥无应力精确合龙。  相似文献   

7.
为研究大跨径混合梁斜拉桥中跨合龙方案与关键技术,以主跨926 m的鄂东长江公路大桥为背景进行研究。综合考虑该桥结构受力与构造特点,通过温度、顶推力及结构局部承载力的分析,确定该桥采用加载合龙方案。合龙过程中实施了合龙口线形调整、塔梁临时约束解除与顶推、劲性骨架设置等关键技术,使该桥中跨合龙始终处于受控状态,合龙过程十分顺利,实现了高精度合龙。  相似文献   

8.
贵黔高速鸭池河特大桥为主跨800m的混合梁斜拉桥,中跨为钢桁梁,边跨为预应力混凝土箱梁。该桥采用缆索吊机进行钢桁梁节段整体悬臂拼装施工,中跨钢桁梁采用自然合龙法施工。施工中,采用优化斜拉索张拉索力的方法实现合龙口姿态的调整,即对22~24号斜拉索分别按70%、60%和50%的成桥索力张拉,合龙后再补张拉,以满足合龙线形要求;对钢桁梁合龙口的间距、标高、轴线、气温和弦杆温度等进行48h连续观测,确定合龙段的合龙温度和放置温度分别为17℃和19℃,上、下游弦杆的配切长度分别为8 114mm和8 136mm;采用钢管和工字钢等临时支撑固定合龙段,以防止其运输和吊装过程中变形。该桥已完成高精度合龙,合龙后主梁线形平顺,误差满足规范要求。  相似文献   

9.
谢兰博  邱峰  黄勇 《桥梁建设》2023,(S2):163-168
G3铜陵长江公铁大桥主桥为跨径布置(127.5+131+988+131+127.5) m斜拉-悬索协作体系桥,结合斜拉-悬索协作体系桥结构特点,提出主梁跨中合龙和交叉区合龙2种方案。对于跨中合龙方案,无法实现直接跨中合龙,可采取合龙口两侧主梁压重或设置临时吊索施工措施进行合龙口调整实现跨中合龙,当采用压重措施时,全桥需压重2 450 t;当采用设置临时吊索措施时,全桥共需设置临时吊索44根。对于交叉区合龙方案,提出采用插值计算方法寻找主梁最优合龙口,该桥最优合龙口位于从桥塔往中跨方向第3根吊索之下,在交叉区最优合龙口合龙主梁不需要采用其它措施,合龙口两侧主梁线形可自动匹配。从结构受力、施工便捷性、工期等方面对2种方案进行对比,结果表明:主梁合龙口设置于交叉区时主梁受力较小,无需压重或设置临时吊索,且由于斜拉段和悬吊段主梁可以同步吊装,节约工期,因此该桥主梁采用交叉区合龙方案。大桥主梁推荐施工方案为先边跨钢梁顶推施工,再主跨钢梁单悬臂架设及缆载吊机吊装,最后在交叉区合龙。  相似文献   

10.
沪苏通长江公铁大桥为主跨1 092 m的双塔五跨连续钢桁梁斜拉桥,是世界上首次采用"整节段三桁结构,多点主动对接合龙"的工程。它采用"先中跨、后边跨"的合龙顺序,利用边墩及辅助墩顶预留的三向调节措施、辅助墩顶已有的大吨位起顶措施及主塔墩旁的悬臂施工抗风牛腿等作为合龙口的辅助调整措施,通过监控计算及合龙口敏感性分析,为钢梁最终的顺利合龙制定了切实可行的方案。  相似文献   

11.
以厦漳跨海大桥北汉主桥为背景介绍钢箱梁斜拉桥中、边跨合龙施工技术.厦漳跨海大桥北汊主桥为主跨780 m的5跨连续半飘浮体系钢箱梁斜拉桥,跨径布置为(95+230+780+230+95)m,双向6车道,箱梁全宽38 m.边跨辅助墩和过渡墩墩顶梁段合龙采用悬拼施工合龙方式,降低了合龙难度.中跨合龙时综合考虑温度、顶推力等因素,确定采用有顶推辅助措施的配切合龙法.全桥施工过程中采用无应力状态控制法进行施工监控.  相似文献   

12.
泰东河大桥为主跨270 m的双塔双索面叠合梁斜拉桥,中跨合龙时采用单侧桥面吊进行吊装。中跨合龙段钢梁需提前进行配切,为实现桥梁无应力合龙,对影响合龙的关键因素进行系统分析,包括桥面吊机重量误差、体系温差等环境参数以及悬臂端施工临时荷载等因素。根据各参数影响程度,提出无应力合龙控制对策以及合龙段合理配切量的确定方法。此外,考虑到实际施工时合龙口两端存在一定误差,研究提出汽车吊移动载和拉索索力调整等快速化调控合龙口姿态的方法。研究成果可较好指导现场施工,并为同类工程提供借鉴。  相似文献   

13.
<正>近日,石首长江大桥主桥中跨顺利合龙,标志着大桥主体工程全部完成,实现贯通。大桥主桥中跨合龙采用钢箱梁顶推工艺,根据天气温度确定南岸钢箱梁顶推行程(15 cm),利用塔梁间纵向临时锚固索做顶推装置,通过张拉千斤顶实现箱梁顶推,方便快捷。施工要点包括南钢箱梁整体顶推、合龙段单边起吊。按照经反复优化的施工方案,合龙段钢箱梁由两台变幅式桥面吊机经1 h起吊至标高并嵌入合龙口,再经1 h体态调整,达到南北两岸箱梁精准匹配并实施焊接,完成合龙。合龙精度控制在2 cm以内。  相似文献   

14.
蒙华铁路洞庭湖特大桥主桥为主跨406m的三塔斜拉桥,主梁采用钢箱-钢桁组合结构。其中,下部钢箱梁宽21m,中心处梁高2.5m;上部钢桁梁采用华伦式布置,节间长14m,桁高12m。该桥主梁采用"先箱后桁"的方案施工,先安装下部钢箱梁,钢箱梁合龙后,在其顶面分组安装钢桁梁。边跨钢箱梁采用顶推法架设;主跨钢箱梁采用悬臂拼装法架设,钢箱梁节段利用300t架梁吊机整体吊装,在主跨跨中采用主动合龙方式合龙。上部钢桁梁杆件采用上弦杆制造长度修正、分组架设(5个节间为1组)、多个调整口合龙等技术施工,完成钢桁梁杆件拼装,并实现精确合龙。  相似文献   

15.
苏通长江公路大桥为主跨1088m钢箱梁斜拉桥,上部结构采用构件几何控制法进行施工控制,要求不改变构件尺寸和无应力线形.中跨合龙前,主梁悬臂长达540.8 m,结构状态受外界因素影响显著,中跨合龙难度极大.该文通过综合国外顶推合龙工艺和国内温度配切合龙工艺优点,提出了全新的顶推辅助合龙工艺应用于实际施工中.并介绍了顶推辅助合龙工艺实施条件、关键施工参数和主要工艺措施的计算分析要点以及实施情况.  相似文献   

16.
襄阳汉江五桥主桥(左、右航道桥)为梁拱组合体系连续刚构桥,4跨连续结构,主墩采用双肢薄壁墩。为降低运营阶段主梁混凝土收缩徐变、温度荷载等对边墩的不利影响,设计要求在施工阶段对中跨合龙前对合龙口进行顶推,储备一定的应力与预偏在2个边墩处。在以往项目中,类似的合龙顺序与顶推工艺较少见,本文对汉江五桥顶推装置设计、顶推施工、顶推观测等方面进行了总结提炼,为类似工程提供参考。  相似文献   

17.
河口黄河大桥为兰州(新城)至永靖沿黄河快速通道的重难点控制工程,主桥采用主跨360m的结合梁斜拉桥。为解决大桥钢梁合龙状态在气温变化时较为敏感的问题,文中采用灰色系统理论对在低温状态下合龙时的误差进行了分析,同时考虑温度效应及系统误差,计算出合龙口顶板间隙应缩减10mm,采用索力适当调整保证无应力长度不变的自然低温合龙方案,代替传统顶推强制合龙方案。大桥的顺利合龙证明了该理论及方案的可行性。  相似文献   

18.
宜宾临港长江公铁大桥主桥为主跨522 m的公铁同层双塔双索面钢箱梁斜拉桥,主桥钢箱梁宽63.9 m、高5 m,节段最大重量519.6 t。钢箱梁采用分部件加工、节段整体制作、场内预拼装方案制造。南岸钢箱梁采用边跨顶推+中跨单悬臂施工;北岸钢箱梁采用边跨存梁+双悬臂施工;中跨合龙段采用配切+顶推合龙。采用钢箱梁顶板与底板单元两拼工艺、钢箱梁锚固块体多工序组拼、预设反变形量的长线法总拼等制造技术,有效解决了超宽钢箱梁焊接变形量大的问题,大大提高了钢箱梁制造精度;南岸边跨钢箱梁利用中跨侧来梁进行顶推施工,解决了边跨运梁、吊梁施工难的问题,且避免了占用既有道路;北岸边跨钢箱梁利用枯水期预先存梁,解决了浅滩区钢箱梁施工受季节性水文影响大的问题,为双悬臂施工提供了先决条件;中跨合龙段采用现场配切+顶推施工,实现主跨钢箱梁精确合龙。  相似文献   

19.
嘉绍大桥主航道桥为(70+200+5×428+200+70)m六塔七跨分幅式钢箱梁斜拉桥。为确保其顺利合龙,结合该桥六塔独柱(桥塔为弱柱结构)并设置竖向双排支座体系和跨中刚性铰等结构特点,按照结构运营状态达到设计理想状态为施工控制目标,采用有限元软件建立实体模型,对关键控制工况分别进行仿真分析,对其合龙工艺、合龙顺序进行研究。研究确定该桥按照无应力状态几何控制法进行顶推合龙施工的方案,7个合龙口按照边跨→中跨→次边跨→次中跨的合龙顺序进行逐次合龙,并对合龙过程中的顶推施工工艺、关键施工参数确定、主要控制手段及实施控制要点进行了阐述。实践证明,该合龙方案和合龙顺序高效、高精度地完成了该桥的顶推合龙施工。  相似文献   

20.
《中外公路》2021,41(3):146-150
南沙港铁路洪奇沥特大桥为主跨360 m的下承式连续钢桁梁柔性拱结构,全桥采用先梁后拱的施工顺序,主梁采用桥面吊机进行悬臂拼装施工,通过顶落主梁各支点和纵移主梁的方式消除合龙口几何位置偏差。为保证主梁顺利合龙,使用Midas有限元软件建立模型,并且考虑了温度和桥面吊机等施工临时荷载,确定了最佳的合龙方案。计算了顶落梁值、温度及桥面吊机站位等参数对合龙口线形的影响因子,便于实际施工中对合龙口进行微调。验算了各施工阶段主梁应力值与刚度,均满足要求。研究结果表明:通过顶落主梁各支点和纵移主梁的方式可以实现连续钢桁梁的高精度无应力合龙,缩短工期,降低施工成本,误差满足规范要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号