首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
针对成桥索力一定情况下,可能仍存在主梁局部应力较大的现象,再次调索较为繁琐,采用改变钢主梁截面参数对成桥状态组合梁受力敏感性进行分析,利用钢主梁参数调整的方法,局部优化主梁的应力,作为对其合理成桥状态计算方法的补充。主要研究内容如下:(1)建立BDCMS及Midas/Civil模型,在成桥索力一定的情况下,以不改变钢主梁的横截面积为前提,对刚成桥及混凝土收缩徐变完成两种状态下的钢主梁截面参数均进行研究分析。以赤壁长江公路大桥塔区五段梁为研究对象,调整塔区五段梁的钢主梁顶、底、腹板厚度,分析成桥状态下组合梁的受力性能;(2)针对成桥状态下Midas/Civil模型中塔区及辅助墩主梁下缘应力局部偏大,边墩桥面板上下缘拉应力较大的情况,采用钢主梁参数调整的方法进行局部优化。  相似文献   

2.
以国道310线大河家(甘青界)至清水公路工程索同坡独塔叠合梁斜拉桥为背景,采用RM Bridge软件建立全桥三维杆系单元模型进行计算,分析对比了成桥阶段和收缩徐变10年后斜拉桥主梁、主塔受力和变形情况。计算结果表明:运营阶段的收缩徐变对叠合梁的受力影响较为显著,使得叠合梁主梁内力发生了重分布,钢梁下缘的应力增大、桥面板压力储备减少,同时主跨主梁在靠近过渡墩的1/4跨径附近产生了下挠;另外主塔在收缩徐变过程中朝主跨方向产生了一定偏位。  相似文献   

3.
港珠澳大桥九洲航道桥为主跨268m双塔单索面钢-混组合梁斜拉桥,辅助墩负弯矩区主梁采用支点顶升法施工。为研究该桥辅助墩支点顶升及回落施工对结构受力的影响,采用MIDAS Civil软件建立全桥空间有限元模型,分析顶升施工全过程中桥塔、主梁、斜拉索的受力。结果表明:顶升施工中桥塔、主梁变形较大,顶升回落后其变形基本恢复至顶升前状态;顶升施工中塔梁固结段位置处桥塔结构应力变化显著,桥面板后叠合区域的钢梁结构应力变化较为明显;顶升后斜拉索索力出现较大幅度的降低,顶升回落后斜拉索索力基本与顶升前索力相一致;支点顶升法能够有效地改善负弯矩区桥面板的受力情况,对负弯矩区施加预应力的效果明显。  相似文献   

4.
为明确在多种不利荷载组合作用下大跨径钢-混组合梁斜拉桥主梁的受力规律,以某桥跨布置为(40+175+410+175+40)m的双塔钢-混组合梁斜拉桥为背景进行研究。采用ANSYS建立该桥混合单元空间有限元计算模型,分析自重及斜拉索索力、车辆轮载、桥面板预应力、混凝土收缩和徐变效应、温度效应等荷载及组合作用下中跨跨中段主梁的结构响应。结果表明:对于双索面钢-混组合梁斜拉桥,局部轮载作用下桥面板呈现出明显的局部受力特性,桥面板"第二体系"拉应力可能会大于"第一体系"压应力,中跨跨中区域及边跨尾索区桥面板应配置纵向预应力;桥面板混凝土的收缩和徐变效应、温度效应的叠加是桥面板出现顺桥向裂缝的根本原因,设计时应全桥配置桥面板横向预应力。  相似文献   

5.
厦漳跨海大桥南汊主桥为跨径布置135m+300m+135m的双塔斜拉桥.该桥主梁采用钢-混结合梁,双工字形钢主梁、横梁和小纵梁形成钢构架,与混凝土桥面板通过剪力钉连接,在工字形钢主梁的上翼缘板上焊接锚拉板.对主梁进行整体和局部分析,并对主梁混凝土桥面板正应力和存放时间2个关键问题进行研究.分析结果表明:钢主梁和混凝土桥面板受力均满足规范要求,且有一定的安全储备;结合梁斜拉桥混凝土桥面板正应力分析中必须考虑弯矩和轴向力综合作用下的剪力滞效应的影响;混凝土桥面板存梁时间对主梁受力有影响,建议存梁时间不宜小于半年.  相似文献   

6.
文山马鹿塘特大桥主桥为(63+137+480+137+63) m双塔双索面斜拉桥,大桥单侧与连拱隧道相接。主梁采用双工字形钢-混组合梁,桥面全宽32.2 m;桥塔采用钻石形混凝土塔,两岸桥塔塔高分别为247 m和254 m;斜拉索按空间双索面对称布置。整幅式桥梁桥隧顺接采用双线分离设计,避免了桥梁整体加宽或设置整体式大跨隧道,同时缩短了连拱隧道长度。为降低汽车、温度和风等荷载作用下的结构响应,在塔梁间设置了弹性刚度为12 MN/m的纵向弹性约束体系,静、动力作用下梁端位移分别下降37.4%和35.9%、桥塔塔柱底纵向弯矩分别降低19%和20%,静力作用下钢主梁应力减小约30 MPa、桥面板抗裂应力储备提高1.13 MPa。辅助墩墩顶主梁采用10 cm落梁设计,墩顶组合梁桥面板抗裂应力储备提升117.7%,且其它主体结构受力未发生显著变化。组合梁采用双节段循环施工方案,有效缩短了主梁施工工期。  相似文献   

7.
灌河大桥为钢-混结合梁斜拉桥。为分析该桥桥面板混凝土收缩应力水平,分别通过试验测定和理论计算公式,得到混凝土前期收缩应变时程曲线和弹性模量时程曲线,根据收缩应变结果进行有限元模拟,得到混凝土前期和后期收缩应力,并对结合梁桥面板混凝土的收缩应力进行评定。结果表明:灌河大桥桥面板混凝土前期收缩量和收缩应力的试验结果大于JTG D62-2004规范公式计算结果;采用杆系模型得到桥面板混凝土顺桥向后期收缩应力最大值为1.5MPa,采用板壳模型得到桥面板混凝土应力最大值顺桥向为1.5MPa、横桥向为2.2MPa,需要采取有效措施以减小桥面板的收缩应力。  相似文献   

8.
泉州湾跨海大桥主桥为主跨400m的双塔分幅式组合梁斜拉桥,采用整体节段悬臂拼装架设,干拼法连接进行主梁节段施工。为研究结构参数对施工过程中结构响应的影响,指导施工控制,采用有限元法建立该桥计算模型,计算施工过程中桥塔弹性模量、钢梁弹性模量、桥面板弹性模量、钢梁重量、桥面板重量等参数对桥塔塔偏、主梁线形、桥面板应力和斜拉索索力的影响。研究结果表明,桥面板及钢梁重量对桥塔塔偏、主梁线形及斜拉索索力影响较大,钢梁弹性模量、桥面板弹性模量及桥面板重量则对混凝土桥面板应力有很大影响,施工过程中需重点控制敏感性参数。该桥采用基于分析结果确定的施工控制原则实施控制,主跨合龙后,成桥实测线形与理论线形、成桥实测索力与理论索力均满足施工控制目标值的要求。  相似文献   

9.
武汉二七长江大桥6×90m钢-混组合连续梁设计   总被引:1,自引:0,他引:1  
张先蓉  胡佳安 《世界桥梁》2012,40(4):11-14,25
为满足武汉二七长江大桥非通航孔深水区行洪、景观等要求,采用结构简单、受力合理及施工便捷的设计思路对非通航孔深水区桥梁进行设计。该深水区桥梁采用6×90m钢-混组合连续梁结构,主梁由下层的钢槽梁和上层的预制混凝土桥面板通过剪力钉连接而成。综合考虑施工环境及多种方法的优缺点,并通过计算确定采用升降主墩及临时墩支承高度的方法降低支点负弯矩区混凝土桥面板拉应力;预制桥面板按带裂缝工作的钢筋混凝土构件设计,横向为整体;从便于施工的角度细化了钢槽梁的构造;桥面板与钢槽梁间采用纵向结合方式,剪力钉数量根据受力变化范围分段布置。  相似文献   

10.
为准确计算Π形组合梁斜拉桥施工过程中的主梁应力,基于能量变分原理建立了考虑轴力、弯矩、剪力滞相互耦合的有限梁段实用单元,提出了适用不同支承、不同边界条件下的有限梁段法主梁应力计算公式,对某主跨360m的Π形组合梁斜拉桥进行了实桥试验验证,并分析了该桥关键施工阶段的应力变化规律。结果表明:采用有限梁段法计算的主梁应力精度较高,钢主梁和混凝土桥面板的应力差异均在±3MPa内,与实桥试验的相对应力误差不超过5%;有限梁段法可以从整体上分析Π形组合梁斜拉桥施工全过程的主梁应力变化规律;关键施工阶段中钢主梁主要受拉,混凝土桥面板主要受压,且整个施工过程中混凝土板应力变化不大。  相似文献   

11.
为了解结构状态参数对大跨径曲线矮塔斜拉桥成桥状态的影响,获取施工控制敏感参数,以黄龙带矮塔斜拉桥——(108+208+108)m双塔三柱式曲线预应力混凝土矮塔斜拉桥为背景,采用有限元软件TDV RM建立该桥空间杆系有限元模型,分析主梁自重、主梁弹性模量、斜拉索索力、预应力张拉力、混凝土收缩徐变和体系温度参数变化下,主梁的应力和挠度的变化规律。结果表明:主梁自重、斜拉索索力、混凝土收缩徐变和体系温度对成桥状态主梁的应力和挠度影响显著,是施工控制敏感参数;主梁弹性模量和预应力张拉力对成桥状态主梁的应力和挠度影响较小,是施工控制非敏感参数。  相似文献   

12.
襄阳市东西轴线二跨汉江大桥主桥为(3×60+320)m的独塔混合梁斜拉桥,边跨主梁采用混凝土梁,主跨主梁采用钢箱梁,桥面采用14mm厚正交异性钢桥面板+80mm厚C40聚丙烯纤维混凝土+70mm厚SMA改性沥青混凝土的铺装方案。为分析该钢-混组合桥面铺装方案的结构受力是否合理,采用MIDAS Civil 2010软件建立全桥整体模型及横隔梁、U肋局部分析模型,对钢梁、混凝土桥面板的应力及混凝土桥面板的裂缝宽度进行计算分析。结果表明:钢梁及混凝土桥面板的各项应力均在规范容许的范围内;钢梁的Von Mises等效应力小于钢材的屈服强度;混凝土桥面板的表面最大裂缝宽度为0.097mm,小于规范控制的目标值0.15mm。  相似文献   

13.
钢-混组合连续梁桥的钢梁和桥面板通过剪力钉连接,混凝土桥面板的收缩徐变变形会受到钢梁的约束,继而引起桥面板和钢梁应力发生重分布。以某市区快速路环线工程钢-混组合连续梁桥为分析对象,研究发现混凝土收缩徐变对组合连续梁桥成桥后的线形和应力均产生一定不利影响,环境年平均相对湿度变化对组合连续梁桥线形和钢梁应力影响较小,相对湿度增加对桥面板受力有利。  相似文献   

14.
根据无背索斜拉桥中大悬臂钢-混凝土组合脊骨主梁的结构和受力特点,采用空间有限元法分析了混凝土桥面板徐变对组合脊骨梁内力分配的影响、钢箱梁扭转效应、组合悬臂挑梁受力及荷载横向分布、桥面板剪力滞效应等几个关键性受力问题,并利用外国规范验算了钢箱梁承压板的局部稳定性。由分析可知,混凝土徐变导致脊骨梁中钢箱梁应力增加,混凝土板应力下降;钢箱梁的扭转翘曲正应力可达到弯曲正应力的10%;大悬臂组合行车道板的横向分布计算取3片梁模型即可,且施工中采取预弯措施可防止组合挑梁的混凝土板受拉开裂;《本四桥规》中承压板容许应力计算公式约具有2.0的安全度;混凝土行车道板的剪力滞效应明显,塔梁固结处的行车道板还出现了负剪力滞现象。上述结论可为同类结构设计提供参考。  相似文献   

15.
《中外公路》2021,41(4):210-214
在特定的建设条件下柔梁密索体系矮塔斜拉桥具有其独特的优势,但工程实例较少,缺乏系统性研究。该文以榕江大桥为背景,通过理论分析及有限元仿真计算,研究其构造特征及受力特点,并对斜拉索布置形式、塔高及主梁刚度等敏感参数进行系统分析。得到如下初步结论:柔梁密索矮塔斜拉桥受力特性与斜拉桥相似,可通过索力优化达到合理成桥状态;塔矮整体结构刚度低,主梁轴力及斜拉索索力相比斜拉桥要大;斜拉索布置形式对结构受力有明显影响,辐射形布置时主梁轴力最小,仅为竖琴形布置时的一半,扇形布置介于两者之间。塔高对结构受力影响显著,随着塔高降低,斜拉索使用效率降低,主梁轴力、斜拉索索力、主梁活载弯矩及挠度、斜拉索活载应力幅均有显著的增加;主梁刚度对活载作用下结构内力也有显著影响,随着主梁刚度的提高,主梁活载弯矩增大、活载挠度减小,斜拉索活载应力幅显著较小。设计时宜充分利用有限塔高,采用可改善拉索倾角的辐射形布置,适当提高主梁刚度,以获得理想的整体结构刚度,调整索梁荷载比,从而使结构受力合理。  相似文献   

16.
湖州北刘屋桥为墩梁半刚性连接的钢-混组合梁整体桥,桥长38.2m,桥宽12.14m,跨径布置为(0.5+12+0.6+12+0.6+12+0.5)m。该桥主梁采用耐候工字钢和现浇混凝土桥面板组成的钢-混组合梁;在主梁与盖梁之间设置橡胶衬垫以适应主梁的弯曲变形;在盖梁中设置外包橡胶套的钢棒,并与端横梁现浇成整体,形成墩梁半刚接并取消墩上支座;采用整体式桥台去除伸缩缝,实现全桥无伸缩缝和支座。采用MIDAS Civil软件建立该桥有限元模型,分析其受力性能,结果表明:恒载作用下,采用整体式桥台,能更有效地发挥混凝土桥面板和钢梁各自的材料性能;桥墩位置无论采用墩梁铰接还是墩梁半刚接,均不影响整体桥主梁应力分布;温度荷载作用下,墩梁半刚接整体桥与墩梁铰接整体桥在墩顶位置处的应力分布有所不同。  相似文献   

17.
花都至东莞高速广园快速路跨线桥为(75+125+75) m矮墩混凝土连续刚构桥,上部结构为单箱单室直腹板变截面预应力混凝土箱梁,中跨采用顶推合龙。利用Midas/Civil软件建立三维空间有限元模型,进行顶推效应计算,分析顶推合龙对于施工预拱度的影响,以及顶推对主梁受力性能的改善情况。通过计算可知,顶推对主梁施工预拱度影响较为明显;通过施加顶推力,可以改善混凝土收缩徐变引起的主梁下挠现象,可以改善主梁及主墩的受力性能。同时研究顶推过程中顶推力与位移、应力之间的关系,提出矮墩连续刚构桥中跨合龙顶推过程控制方法,为同类型的桥梁顶推合龙施工控制提供了一定的参考。  相似文献   

18.
为研究场地效应对高墩桥梁随机地震响应的影响规律,基于随机振动理论,研究了不同墩高和墩高差时场地效应对山区高墩桥梁在强地震作用下多点激励随机响应规律.对基于ANSYS的随机振动计算理论进行推导并建立三维数值有限元模型,对不同墩高和墩高差的山区高墩桥梁进行不同场地条件下的多点激励随机地震分析.研究表明:场地效应对高墩桥梁地震响应影响显著.软场地条件下,桥墩位移和主梁轴力均较硬、中场地时大;随着墩高的增加,硬、中、软场地效应对主梁轴力影响先增大后减小;随着墩高差的增加,主梁轴力变化规律性不强,成波动性变化;主梁横桥向弯矩对场地效应敏感,软场地时响应是硬、中场地时的5~12倍,靠近高墩处的边跨反应比矮墩处边跨明显;随着墩高差的增加,软场地对主梁弯矩响应放大作用也随之增加.  相似文献   

19.
新建常益长铁路沅江特大桥跨石长铁路桥为(32.7+90+90+32.7) m空间双索面钢拱塔钢-混结合梁斜拉桥,以18°小角度跨越既有高铁运营线路。该桥采用先拱后梁方案施工,其中,桥塔采用先竖转再跨线平转法施工,钢主梁采用拖拉法跨线施工。为确保成桥线形和应力满足设计要求,采用MIDAS Civil软件建立有限元模型,对拱塔竖转与跨线平转、钢主梁跨线拖拉、斜拉索张拉及混凝土桥面板浇筑进行施工模拟,提出拱塔顶推力及无应力线形、钢主梁临时扣塔结构与扣索力、混凝土桥面板分段施工、斜拉索三次张拉等控制技术,并将施工中拱塔与主梁的实测应力、线形与理论值进行对比分析。结果表明:拱塔转体施工过程中,拱塔线形与应力实测值与理论值吻合良好;钢主梁拖拉合龙精度控制良好;混凝土桥面板浇筑、斜拉索张拉后,主梁和拱塔的应力、线形实测值与理论值误差均在合理范围内,桥面标高满足无砟轨道铺设精度要求;铺轨后,拱塔和主梁的线形与应力、斜拉索索力等各项指标均良好,大桥整体施工控制精度良好。  相似文献   

20.
采用有限元法建立钢-混凝土组合桥梁的结构模型,分析了不同典型施工阶段下桥梁主梁和腹板结构的受力特征,获得了桥梁整体失稳状态。并以桥梁局部失稳状态分析斜拉桥结构的稳定性特征,获得影响斜拉桥稳定性的各影响因素关系。研究结果表明:全桥一阶整体失稳态下的总体稳定系数为7. 7,大于一般计算稳定系数4. 0;桥梁施工状态下,主梁最大应力出现在成桥阶段1 000 d后,桥面板承受最大压应力出现在中跨合拢阶段,均满足规范。对于桥梁主梁腹板,在设计荷载组合作用下,主梁腹板加劲肋局部位置易发生屈曲变形。当轴力/弯矩小于0. 5时,首先在梁段产生横梁侧倾失稳,随着轴力/弯矩比值的增加,由横梁侧倾斜转化为主梁腹板或加劲肋的失稳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号