首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 945 毫秒
1.
《Marine Structures》2004,17(5):403-432
Firstly, pitting corrosion observed on hold frames in way of cargo holds of bulk carriers which exclusively carry coal and iron ore has been investigated in detail. It was shown that the shape of the corrosion pits observed on them is a circular cone and the ratio of the diameter to the depth is in the range between 8 to 1 and 10 to 1, which is different from the trend observed for the bottom shell of the oil tanker where the ratio is in the range between 4 to 1 and 6 to1.Secondly, a series of tensile tests has been conducted to investigate the effect of pitting corrosion on tensile strength of members. It was pointed out that the tensile strength decreases gradually and the total elongation decreases drastically with the increase of the thickness loss due to pitting corrosion. The reduction of the tensile strength of the members with pitting corrosion is larger than that of members with uniform thickness loss in terms of average thickness loss.Thirdly, a series of compressive buckling tests has been performed to examine the influence of pitting corrosion on buckling behavior of members. It was found that compressive buckling strength of pitted members is smaller than or equal to that of members with uniform thickness loss in terms of average thickness loss.Finally, an elasto-plastic analysis by FEM has been carried out to simulate the compressive buckling test in order to validate the method of modeling members with pitting corrosion. An attempt has been made to simulate the compressive buckling behavior of pitted members using shell elements of which meshing size is almost the same as the original thickness of the pitted plate.  相似文献   

2.
Pitting corrosion is typical corrosion observed on coated hold frames of bulk carriers which exclusively carry coal and iron ore. In order to secure the safety of these types of bulk carriers, it is important to understand the effect of pitting corrosion on local strength of hold frames.

In order to investigate this effect, a series of 4- and 3-point bend tests on structural models which consist of web, shell and face plates has been carried out. Artificial pitting was created on the web plate to simulate pitting. In the 4-point bend tests, two equal concentrated loads have been applied vertically at the one-third points of simply supported models so that compression load due to bending would act on the face plate. In this testing condition, lateral-distortional buckling occurred before reaching the ultimate strength and local buckling of the face plate was observed after reaching the ultimate strength. The effect of web plate pitting on the lateral-distortional buckling strength was found to be small but the ultimate strength decreases with increase in the degree of pitting intensity. In the 3-point bend tests, concentrated load has been applied vertically at the center of simply supported models so that compression load due to bending would act on the face plate. In this testing condition, local face buckling occurred just after reaching the ultimate strength. The ultimate strength is found to be decreasing with increase in the degree of pitting intensity.

A series of non-linear FE analyses has been performed to simulate the deformation behavior observed in the tests. It has been revealed that even in the case of randomly distributed pitting corrosion the ultimate strength of the structural models was almost the same as that of the structural models with uniform corrosion corresponding to the average thickness loss.  相似文献   


3.
Locally pitted tubular members are usually considered as stub columns to assess the ultimate strength. However, it is not suitable for those with relatively larger slenderness ratios as their failure behavior is more complex and closely related to corrosion features of localized pitting. This paper presents compressive column tests on locally pitted tubular members of a moderate slenderness ratio. Corrosion pits were artificially introduced on local surface of the members, forming corrosion patches with various corrosion features. A numerical modelling method was proposed to reproduce the test specimens. Localized pitting damage was proven to cause substantial declines in the load deformation capacity and ultimate strength, and have a significant effect on the failure mode. The failure of a pitted member is mostly initiated by local buckling after yielding occurs in the corrosion patch, concurrent with pitting closure, and even shear cracking of member wall due to the perforated pits. Moreover, shape change of the corrosion patch most likely results in the failure mode to alter from column buckling to local buckling or interactive buckling. The shape ratio of the corrosion patch is one of the critical factor to influence the ultimate strength of locally pitted members. The proposed modelling method is applicable for extensive stochastic simulations so as to develop an empirical formula and to clarify the probabilistic characteristics of ultimate strength.  相似文献   

4.
采用非线性有限元法对中拱和中垂工况条件下碳纤维增强聚合物(Carbon Fiber Reinforced Polymer, CFRP)修复的浮式生产储卸油装置(Floating Production Storage and Offloading, FPSO)点蚀船体梁极限强度进行仿真分析。对比FPSO的完整船体梁、点蚀船体梁和CFRP修复的点蚀船体梁的中拱极限弯矩和中垂极限弯矩,分析CFRP对FPSO点蚀船体梁的修复效果,并分析胶层失效规律。结果表明,CFRP可为船舶的高效修复提供一种新的方式。  相似文献   

5.
Localized pitting corrosion often occurs on marine and offshore structures in the form of patch corrosion with great uncertainties in the location, size and shape. The variation of corrosion features affects ultimate strength of tubular members significantly, but it is still not well understood. This paper presents a numerical study on tubular members of diverse slenderness ratios to clarify the localized pitting effect on ultimate strength. Numerical analyses were performed based on novel models of pitted members that were calibrated against benchmark column tests. Corrosion pits were randomly introduced on the local outside surfaces of members via stochastic simulation, forming corrosion patches varied in the location, size and shape. Numerical results obtained were regressed to propose a unified empirical formula to predict ultimate strength. It turned out that the shape of the corrosion patch has a significant influence on the ultimate strength. The shape change of the patch can alter failure modes of medium length columns. The reduction of ultimate strength is closely related to the shape ratio of the patch besides the volume loss of corroded material. The unified empirical formula incorporating the shape ratio and the volume loss shows a good ability to predict the experimental results.  相似文献   

6.
The paper focuses on the assessment of the hull girder ultimate strength,combined with random pitting corrosion wastage,by the incremental-iterative method.After a brief review about the state of art,the local ultimate strength of pitted platings under uniaxial compression is preliminarily outlined and subsequently a closed-form design formula is endorsed in the Rule incremental-iterative method,to account for pitting corrosion wastage in the hull girder ultimate strength check.The ISSC bulk carrier is assumed as reference ship in a benchmark study,devoted to test the effectiveness of the incremental-iterative method,by a comparative analysis with a set of FE simulations,performed by Ansys Mechanical APDL.Four reference cases,with different locations of pitting corrosion wastage,are investigated focusing on nine combinations of pitting and corrosion intensity degrees.Finally,a comparative analysis between the hull girder ultimate strength,combined with pitting corrosion wastage,and the relevant values,complying with the Rule net scantling approach,is performed.Based on current results,the modified incremental-iterative method allows efficiently assessing the hull girder ultimate strength,combined with pitting corrosion wastage,so revealing useful both in the design process of new vessels and in the structural health monitoring of aged ships.  相似文献   

7.
The alternate hold still-water loading in hogging combined with wave loading is critical for the safe design of bulk carriers. The ultimate longitudinal strength of the hull girder of bulk carriers in this condition has been found to be considerably reduced by the action of local lateral pressure loads. In the present paper, an interaction equation based on the ultimate hull girder strength assessment obtained by nonlinear finite element analyses is adopted to consider the relationship between ultimate longitudinal bending capacity and average external sea pressure over the bottom. This interaction equation is used as the basis for the failure function. The annual probability of failure is obtained by FORM analysis considering two typical load cases, namely, pure longitudinal hogging bending moment and combined global hogging bending moment and local lateral pressure loads. The effect of heavy weather avoidance on the failure probability is evaluated. The results show that the local lateral pressure has a significant influence on the annual probability of failure of bulk carriers in the hogging and alternate hold loading condition.  相似文献   

8.
《Marine Structures》2007,20(1-2):100-114
Over the past decades there have been many losses of the merchant vessels due to either accidents or exposure to large environmentally induced forces. The potential for the structural capability-degrading effects of both corrosion and fatigue induced cracks are of profound importance and must be both fully understood and reflected in vessel's inspection and maintenance programme. The present study is focused on assessing the effects of localized pitting corrosion which concentrates at one or several possibly large area on the ultimate strength of unstiffened plates. Over 256 nonlinear finite element analyses (FEA) of panels with various locations and sizes of pitting corrosion have been carried out. The multi-variable regression method is applied to derive new formulae to predict ultimate strength of unstiffened plates with localized corrosion. The results indicate that the length, breadth and depth of pit corrosion have weakening effects on the ultimate strength of the plates while plate slenderness has only marginal effect on strength reduction. Transverse location of pit corrosion is also an important factor determining the amount of strength reduction. When corrosion spreads transversely on both edges, it has the most deteriorating effect on strength. It was also found out that the proposed formulae can accurately predict the ultimate strength of unstiffened plate with localized corrosion.  相似文献   

9.
This paper presents the results of a parametric study of probabilistic modelling of the ultimate strength of ship plates with non-uniform corrosion represented by random fields. The load-shortening behaviour of the plates with non-uniform reduction of thickness due to corrosion under longitudinal compression is obtained using a general-purpose nonlinear finite element analysis program. A nonlinear time-dependent corrosion model is used to define the probabilistic characteristics of the random fields based on corrosion data measured in plate elements at different locations of bulk carriers. Based on the probabilistic models derived by Monte Carlo simulation, equations to predict the mean and the 5 % characteristic value of the ultimate strength of plates with non-uniform corrosion are developed. Finally a regression equation is proposed to take into account the effect of non-uniform corrosion patterns in the predictions of the ultimate strength of plates with uniform corrosion.  相似文献   

10.
杜晶晶  杨平  崔冲  夏添 《船舶工程》2016,38(9):89-94
本文着眼于老龄化船舶结构上的局部点状腐蚀和整体点状腐蚀,利用非线性有限元软件分析了超过100个船体板结构的极限强度。研究了蚀坑形状、蚀坑位置、蚀坑大小、蚀坑深度和板的柔度对含局部点状腐蚀船体板的极限强度的影响,蚀坑分布、板的柔度和腐蚀体积对含点状腐蚀船体板的极限强度的影响。拟合出了单面、双面局部点状腐蚀下的船体板极限强度折减公式,单面、双面点状腐蚀下的船体板极限强度折减公式。并得到同时适用于局部和整体点状腐蚀板极限强度的公式。  相似文献   

11.
针对老龄化船舶结构上的点状腐蚀,利用非线性有限元方法进行计算,分析304个船体加筋板的极限强度,探讨带板柔度、加强筋柔度、腐蚀面积比和腐蚀深度比对纵向压力下含点蚀损伤船体加筋板极限强度的影响,拟合出点状腐蚀下船体加筋板极限强度折减公式并对其适用性进行验证,研究结果具有一定的工程参考意义和价值。  相似文献   

12.
The objective of this study was to estimate the strength and deformability of corroded steel plates under quasi-static uniaxial tension. In order to accurately simulate this problem, we first estimated the true stress–strain relationship of a flat steel plate by introducing a vision sensor system to the deformation measurements in tensile tests. The measured true stress–stain relationship was then applied to a series of nonlinear implicit three-dimensional finite element analyses using commercial code LS-DYNA. The strength and deformability of steel plates with various pit sizes, degrees of pitting intensity, and general corrosion were estimated both experimentally and numerically. The failure strain in relation to the finite element mesh size used in the analyses was clarified. Two different steels having yield ratios of 0.657 and 0.841 were prepared to examine the material effects on corrosion damage. The strength and deformability did not show a clear dependence on the yield ratios of the present two materials, whereas a clear dependence was shown with respect to the surface configuration such as the minimum cross-sectional area of the specimens, the maximum depth of the pit cusp from the mean corrosion diminution level, and pitting patterns. Empirical formulae for the reduction of deformability and the reduction of energy absorption of pitted plates were proposed which may be useful in strength assessment when examining the structural integrity of aged corroded structures.  相似文献   

13.
The ultimate strength assessment of platings affected by random corrosion wastage is a key factor for the reliable design of new ships and the structural health monitoring of aged structures, as pitting corrosion wastage significantly affects the ultimate capacity of platings under compression. In this respect, significant efforts have been undertaken in the last decade to assess the ultimate strength drop-off of pitted platings under compression and several interpolating design formulas, based on a large number of FE simulations, have been developed. Nevertheless, current Rules and guidelines don't provide any explicit strength check criterion for pitted platings. Hence, the main aim of current research is the development of a new framework for the ultimate strength assessment of pitted platings, based on a stochastic approach and the endorsement of Monte Carlo simulation. A new formula, which allows evaluating the statistical properties of the plating ultimate strength in presence of random corrosion wastage, is developed. Subsequently, a benchmark study is carried out, to compare the new formula with the existing ones available in literature and a wide set of FE simulations, carried out by Ansys APDL. Current results are discussed, and the effectiveness of the new formula is verified.  相似文献   

14.
This is the second of two companion papers dealing with nonlinear finite element modelling and ultimate strength analysis of the hull girder of a bulk carrier under Alternate Hold Loading (AHL) condition. The methodology for nonlinear finite element modelling as well as the ultimate strength results from the nonlinear FE analyses was discussed in the companion paper (Part 1). The purpose of the present paper is to use the FE results to contribute towards developing simplified methods applicable to practical design of ship hulls under combined global and local loads. An important issue is the significant double bottom bending in the empty hold in AHL due to combined global hull girder bending moment and local loads. Therefore, the stress distributions in the double bottom area at different load levels i.e. rule load level and ultimate failure load level are presented in detail. The implication of different design pressures obtained by different rules (CSR-BC rules and DNV rules) on the stress distribution is investigated. Both (partially) heavy cargo AHL and fully loaded cargo AHL are considered. Factors of influence of double bottom bending such as initial imperfections, local loads, stress distribution and failure modes on the hull girder strength are discussed. Simplified procedures for determination of the hull girder strength for bulk carriers under AHL conditions are also discussed in light of the FE analyses.  相似文献   

15.
根据IACS共同规范(CSR),针对散货船结构,采用逐步递增破坏分析法计算船体结构的极限承载能力,同时编制了计算程序。对典型箱型梁模型和一艘散货船极限强度的计算结果表明,我们所开发的计算程序是正确可靠的。此外,对影响散货船极限强度的参数进行了敏感度探讨,计算结果表明屈服应力和板厚对船体极限强度的影响很大,应着重考虑。  相似文献   

16.
对于大型散货船,强力甲板是船体承受总纵弯矩及局部载荷的主要构件。特别是在压载工况下,强力甲板易出现结构问题,因此合理的强力甲板设计对船舶结构安全性和经济性十分重要。提出了基于响应面法的船体结构优化方法,并对一艘76 000 DWT散货船货舱段的强力甲板结构进行优化设计以验证该方法的有效性。在不同板厚尺寸、相同工况下进行甲板参数的灵敏度分析,选取适合的参数作为自变量。在计算出最大相当应力的基础上,应用响应面法的均匀设计试验方法,得出该舱段强力甲板最大应力与结构尺寸的函数表达式。以结构重量最轻为目标函数,在结构强度以及规范要求的最小厚度的约束条件下,对该舱段的强力甲板结构厚度进行优化。所得的优化结果说明该优化设计方法在实际工程中具有应用价值。  相似文献   

17.
The dynamic buckling of the main deck grillage would result in the total collapse of the ship hull subjected to a far-filed underwater explosion. This dynamic buckling is mainly due to the dynamic moment of the ship hull when the ship hull experiences a sudden movement under impact load from the explosion. In order to investigate the ultimate strength of a typical deck grillage under quasi-static and dynamic in-plane compressive load, a structure model, in which the real constrained condition of the deck grillage was taken into consideration, was designed and manufactured. The quasi-static ultimate strength and damage mode of the deck grillage under in-plane compressive load was experimentally investigated. The Finite Element Method (FEM) was employed to predict the ultimate strength of the deck grillage subjected to quasi-static in-plane compressive load, and was validated by comparing the results from experimental tests and numerical simulations. In addition, the numerical simulations of dynamic buckling of the same model under in-plane impact load was performed, in which the influences of the load amplitude and the frequency of dynamic impact load, as well as the initial stress and deflection induced by wave load on the ultimate strength and failure mode were investigated. The results show that the dynamic buckling mode is quite different from the failure mode of the structure subjected to quasi-static in-plane compressive load. The displacements of deck edge in the vertical direction and the axial displacements are getting larger with the decrease of impact frequency. Besides, it is found that the dynamic buckling strength roughly linearly decreased with the increase of initial proportion of the static ultimate strength P0. The conclusions drawn from the researches of this paper would help better designing of the ship structure under impact loads.  相似文献   

18.
This work deals with the ultimate compressive strength of highly damaged plating resulting from dropping objects, grounding or collision. Extensive static nonlinear finite element analyses are conducted, where several governing parameters are considered. The effect of dent depth as well as dent size is studied. Different dent shapes are considered in order to cover different possible damage scenarios. The toughness modulus is used to measure the capacity of the plate to withstand the applied load with permanent deformation. An expression to estimate the average reduction of ultimate strength of highly damaged steel plates, subjected to compressive loading as a function of the residual breadth ratio is also developed.  相似文献   

19.
根据MARPOL公约,对CSR-H规定的破口范围进行概率分析。以一艘超大型油船为例,分别统计了单舱破损后各个肋位的静水弯矩概率特征和基于全球海况谱的一周波浪弯矩预报值;基于Smith法的船体梁极限弯矩计算软件,分别统计了各舱破损后极限弯矩的概率特征;采用改进一次二阶矩法,计算了各舱破损后的剩余强度可靠度。研究结果表明:机舱和首尾货舱发生破损后整船失效概率较低,中部货舱区域发生破损后整船失效概率较大,尤其在静水中垂破损工况下最危险,失效概率在10^-2量级。  相似文献   

20.
张洁 《水运工程》2021,(4):180-186
针对东南亚地区采用中国标准的PHC管桩与英标的对接问题,基于英标对混凝土结构的一般规定,确定了英标应用于PHC管桩力学性能计算的方法,计算项目包括:材料强度、预应力损失、轴向允许最大工作压力、抗剪承载力、抗裂弯矩、极限弯矩,并将这些力学指标与我国常用标准的计算结果进行对比。对比结果表明:英标计算结果总预应力损失、有效预压应力接近;轴向允许最大工作压力偏小;抗剪承载力设计值、抗裂弯矩和极限弯矩设计值偏大。结果为海外工程中PHC管桩标准的使用提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号