首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
基于山西某汽车公司的S108项目在ADAMS/Car模块中建立整车动力学仿真模型及路面模型,并进行整车的随机路面输入和脉冲输入平顺性仿真.通过仿真分析结果可知该车平顺性能良好.进一步改变前后悬架的弹簧刚度及减震器的阻尼,讨论其变化对该车的平顺性能的影响.仿真分析后,发现前悬架弹簧刚度的影响相对于后悬架稍大,而减震器阻尼的影响相对于后悬架稍小.  相似文献   

2.
正为了缓和与衰减摩托车在行驶过程中因道路凹凸不平受到的冲击和振动,保证行车的平顺性与舒适性,有利于提高摩托车的使用寿命和操纵的稳定性,摩托车上均设置有悬挂和减震器装置。减震器作为摩托车的关键部件,由悬架弹簧和阻尼器组成。减震器与整车行驶要求匹配的好坏对整车的驾驶平顺性,操纵稳定性和舒适性等有重要  相似文献   

3.
水罐消防车操纵稳定性与平顺性的仿真优化   总被引:1,自引:0,他引:1  
使用MSC Adams/Car软件建立了某水罐消防车的动力学模型,基于此模型对整车操纵稳定性与平顺性进行仿真试验.结合仿真数据对前后悬架的刚度和阻尼进行正交设计优化,最后根据对优化结果的权衡分析,选定能同时提高操纵稳定性与平顺性的最优悬架参数组合,并通过仿真试验进行验证.  相似文献   

4.
江铃轻型货车行驶平顺性的改善   总被引:3,自引:0,他引:3  
本文针对江铃轻型货车行驶平顺性不佳问题。进行了系统的道路试验,电液伺服模拟激振试验,模态试验和理论分析;查明了该车平顺性不佳的主要原因是前后悬架刚度过大,特别是后悬架在空载时;在不改变钢板弹簧安装尺寸的条件下对前后板簧进行了改进设计。试制后装车试验表明,行驶平顺性显著提高,操纵稳定性有一定改善。改进型板簧、台架的疲劳寿命达到了标准要求,在行驶可靠性试验中未出现板簧损坏。改进型板簧比原车板簧质量减轻  相似文献   

5.
随着研究分析橡胶衬套发现橡胶衬套的刚度变化对汽车的悬架参数有重要的影响,进而直接影响着汽车的平顺性、操纵稳定性能。文章选择对橡胶衬套的刚度展开讨论,首先建立了带有橡胶衬套与转向系的双横臂独立前悬架的弹性连接运动学模型。以车轮外倾角、车轮前束角、主销后倾角、主销内倾角、轮距的变化、轮心处悬架垂直刚度等悬架参数为观察指标,设置悬架与整车的部分参数,给建立的模型输入左右车轮平行跳动激励,进行仿真对比,得出弹性连接状态下的模型综合结果更好。然后分析在弹性运动学状态下各个橡胶衬套刚度的改变对悬架运动学特性参数的影响大小,得出衬套径向刚度、轴向刚度的改变对悬架运动学特性参数综合影响,这对提升汽车的操纵稳定性与平顺性有较好的指导意义。  相似文献   

6.
悬架是客车的重要组成部分,与客车行驶平顺性、乘坐舒适性、操纵稳定性密切相关。本文介绍一款11 m旅游客车多片簧悬架系统设计,主要介绍多片簧、减振器、横向稳定杆的选用及设计计算。  相似文献   

7.
李伟  贯怀光  陈忠廷 《汽车电器》2023,(4):23-27+31
为了提高车辆的悬架K&C特性以及操纵稳定性,常见的方式就是通过更改悬架硬点来改变K特性和更改弹性件动静刚度来改变C特性。悬架在汽车底盘中起着举足轻重的作用,在乘用车的操纵稳定性方面要求达到更高的标准。本文选取一款乘用车作为研究对象,针对前悬架K&C特性和整车操纵稳定性展开分析与研究,以ADAMS/Car为平台,建立乘用车前悬架系统的刚体模型,更改乘用车前悬架参数,也就是硬点修改后车辆悬架K特性变化情况,最后对前悬架模型和刚体模型进行运动学仿真分析,通过分析侧倾中心、轮距、车轮外倾角、前束角、主销内倾角、主销后倾角性能参数在乘用车前悬架运动过程中的变化规律,为悬架设计人员和维修保养人员提供借鉴。  相似文献   

8.
简述了基于近似模型的车辆操纵稳定性及平顺性的优化设计方法.利用多体动力学软件ADAMS/Car建立了某轿车整车多体动力学模型,并确定了车辆操纵稳定性及平顺性的评价目标.以悬架弹簧刚度、减振器阻尼特性和横向稳定杆刚度为设计变量,利用近似优化数学模型对该轿车进行了操纵稳定性和行驶平顺性的多目标优化计算.结果表明,近似模型技术对于汽车性能的平衡优化是一种十分有效的方法.  相似文献   

9.
金帅  王保苓  刘向  王鹏 《北京汽车》2021,(5):16-19,32
减振器是悬架系统中重要的力学元件,其F-V(Force-Velocity,力-速度)特性对车辆的平顺性和操纵稳定性有重要影响.依据某车型的整车参数,在CarSim中建立整车仿真模型,通过改变减振器低速、中速和高速的复原和压缩阻尼力特性,分析车辆在扫频路面及凸块路面的平顺性和操纵稳定性,结果表明:复原和压缩阻尼对整车平顺性和操纵稳定性具有显著影响.  相似文献   

10.
正1前言板簧作为承载的重要部件,在悬架系统设计占有非常重要的地位。板簧性能对整车的舒适性、平顺性、操纵稳定性至关重要。目前传统的商用车悬架用前、后板簧主要为由弹簧钢加工而成的钢板弹簧。近年来随着石油价格不断上涨,作为运输行业首要选择的商用车,使用成本也在不断上涨,而整车自重是节油降成本的关键,车型的轻量化已经成为用户购车的一个重要考虑因素。复合材料板簧具备轻量化的先天优势,随  相似文献   

11.
悬架在整车中占据着举足轻重的地位,决定了车辆操纵稳定性及平顺性的好坏。为了使得初步设计的双横臂式独立悬架性能得到提升,论文采用多目标拓扑优化的方法对前悬架进行了优化。首先在ADAMS/CAR中建立了车辆前悬架模板子系统,仿真出车轮定位参数变化曲线。接着在ADAMS/Insight模块里,设计目标选为车轮定位参数,设计变量选为前悬架硬点坐标,根据敏感度大小,对前悬架硬点坐标进行了优化,曲线对比结果显示优化有效。  相似文献   

12.
客车因载质量大和质心高的特点难以兼顾操纵稳定性和平顺性,为此本文提出了一种侧倾构型的液压互联悬架(RHIS)与电控空气悬架(ECAS)相结合的新型悬架系统。首先,基于热力学理论建立了空气弹簧非线性模型并试验验证;基于质心定理、动量矩定理推导了整车9自由度动力学模型,建立了整车和RHIS的机械-液压耦合模型,并通过实车测试验证了模型;然后,设计了气囊模糊控制器以实现车身高度调节;最后,在常用的操纵稳定性和平顺性测试工况下仿真对比了新型和传统悬架系统的性能。结果表明,所提出的新型悬架系统可实现3挡车身高度调节,且在保持原车平顺性的同时明显改善了整车的操纵稳定性。  相似文献   

13.
悬架是汽车的重要组成部分,其性能的好坏直接影响车辆的操纵稳定性与平顺性。文章以巴哈(Baja)大赛赛车前悬架为研究对象,在ADAMS/Car中建立模型,进行仿真与优化,根据优化的结果进行平顺性实验,对提高车辆的操纵稳定性和平顺性具有一定指导意义。  相似文献   

14.
对装备燃料电池动力系统的轿车进行悬架匹配,通过改变弹簧刚度与长度使得在保证车辆平顺性的同时满足了对离地间隙的要求.基于ADAMS/CAR的悬架运动学与整车操纵稳定性分析结果显示,悬架匹配后该燃料电池轿车不足转向特性与角阶越输入的响应特性较原车削弱,操纵稳定性总体良好.  相似文献   

15.
舒红 《重型汽车》1999,(1):11-13
变刚度板簧凸轮形支架的几何形状是影响悬架弹性特性的重要因素之一。文章结合汽车平顺性及板簧变形运动学要求,对凸轮形支架几何形状设计进行了研究,所推导的公式适用于可变刚度多片板簧的支架设计计算。  相似文献   

16.
渐变刚度钢板弹簧作为主要的承载元件,其刚度特性在衰减悬架总成传递的载荷以及提高整车的行驶平顺性过程中具有重要意义。本文在渐变刚度板簧的刚度特性分析中,建立了离散beam梁模型、柔性体动力学模型以及有限元模型,结合试验参数曲线进行了对比分析。通过分析认为柔性体动力学模型的刚度曲线特性与试验刚度曲线特性较为吻合,在整车平顺性仿真中实用性较强,结果与实际较为接近。  相似文献   

17.
针对轿车悬架系统对车辆操纵稳定性有较大影响,利用机械系统动力学分析软件ADAMS建立了带有转向系统的某轿车模型。通过改变汽车的质心高度、质心前后位置、前悬架刚度、整车载荷和前后轮的侧偏刚度等汽车结构参数,以转向盘转角阶跃输入为例进行整车仿真,利用得到的仿真曲线对比分析这些汽车结构参数对操纵稳定性所造成的不同影响。  相似文献   

18.
针对轿车悬架系统对车辆操纵稳定性有较大影响,利用机械系统动力学分析软件ADAMS建立了带有转向系统的某轿车模型。通过改变汽车的质心高度、质心前后位置、前悬架刚度、整车载荷和前后轮的侧偏刚度等汽车结构参数,以转向盘转角阶跃输入为例进行整车仿真,利用得到的仿真曲线对比分析这些汽车结构参数对操纵稳定性所造成的不同影响。  相似文献   

19.
整车姿态设计是越野车辆整车总布置设计中的一项重要工作,它涉及到重量控制、造型、整车视野、悬架行程与刚度、操纵稳定性及通过性等诸多要素。本文在某4×4越野车整车姿态设计过程中,基于Excel表格与CATIA软件,应用参数化设计方法,分析了双横臂独立悬架系统刚度与地面线设计过程。该方法可以推广应用于同类型越野车整车姿态的设计中。  相似文献   

20.
电动汽车车身平顺性及车轮接地性分析与优化   总被引:1,自引:0,他引:1  
以某分布式四轮驱动电动汽车为研究对象,在Adams/car中建立了整车模型,通过对前、后悬架参数进行灵敏度分析,探讨其对车身平顺性与车轮接地性的影响。基于α法建立评价车身平顺性与车轮接地性指标的多目标函数,对灵敏度较高的悬架参数进行优化设计。结果表明,优化后前、后悬架的刚度减小,前悬架的阻尼增大。与优化前相比,车身垂向加速度均方根值减小16%,左、右前轮动载荷的均方根值均减小11%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号