首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
智能网联卡车车队有望成为网联自动驾驶率先应用的场景之一,本文针对智能网联卡车车队混合交通流通行能力开展研究。首先,以智能网联卡车车队、人工驾驶卡车及人工驾驶小汽车构成的随机混合交通流为研究对象,考虑智能网联卡车车队规模空间分布特征,分析混合交通流中10种跟驰行为类型,理论推导其概率表达式,进而构建智能网联卡车车队混合交通流通行能力的通用性分析方法。然后,考虑实际交通流运行中卡车分布的随机性,将智能网联卡车车队混合交通流分为优势流、随机流和劣势流3种态势,以此提升混合交通流通行能力分析方法的普适性。最后,选择实测数据标定的跟驰模型进行案例分析,验证理论分析方法的有效性。研究结果表明:智能网联卡车比例提高或其车队规模增大均有利于3种态势混合交通流中车辆转换系数及相对熵的减小,从而可有效提升混合交通流通行能力。不同智能网联卡车比例条件下,智能网联卡车车队随机分布最优车队规模为2~4辆,同时,优势流、随机流和劣势流3种混合交通流通行能力依次递减。研究结果揭示了智能网联卡车车队混合交通流通行能力提升的内在机理,为未来智能网联卡车车队的运营管理提供方法支撑。  相似文献   

2.
分析近年来智能网联环境下交通流波动消除策略的研究进展,根据模型构建的技术手段将其分为三类:跟驰模型稳定性解析控制、交通流波动传播轨迹控制、强化学习驾驶行为优化控制。回顾各类策略的研究现状与模型机理,对比讨论各类控制策略的优势与不足,并从技术背景、研究场景、算法流程和应用理论方面提出智能网联环境下交通流波动消除策略的未来深化研究方向,包括考虑多车道道路环境、交通流微观机理、车辆冲突博弈的复杂情境,考虑宏微观智能网联车控制与交通流主动控制的融合优化,考虑数据缺陷、系统不确定和环境扰动下系统可扩展性和鲁棒性提升,以期为了解交通流波动消除研究进展、提升智能网联环境下交通流波动控制效果提供参考。  相似文献   

3.
为提高交通流运行的机动性、稳定性,对车辆协同巡航控制(CACC)系统进行了改进设计. 基于经典Newell 模型提出了考虑CACC的改进跟驰模型,分析了所提出的CACC改进跟驰模型的动力学特性,给出了CACC改进跟驰模型的线性稳定性条件,并对由CACC车辆和非CACC车辆组成的非均匀车队的不同无线通讯拓扑结构进行了比较研究. 通过数值试验进一步研究了在起步、刹车和意外事件的情况下,CACC车辆的存在对交通流动力学的影响. 研究结果表明,通过合理设计CACC跟驰系统的模型参数取值后,CACC车辆的存在一方面可以提高交通流运行的机动性与稳定性,另一方面可以使交通出行更加的安全和舒适. 此外,由于不同车队中CACC车辆的无线通讯拓扑结构会影响交通流的机动性与稳定性,对于 CACC车辆的无线通讯拓扑结构应慎重的设计与优化.  相似文献   

4.
为提高交通流运行的机动性、稳定性,对车辆协同巡航控制(CACC)系统进行了改进设计. 基于经典Newell 模型提出了考虑CACC的改进跟驰模型,分析了所提出的CACC改进跟驰模型的动力学特性,给出了CACC改进跟驰模型的线性稳定性条件,并对由CACC车辆和非CACC车辆组成的非均匀车队的不同无线通讯拓扑结构进行了比较研究. 通过数值试验进一步研究了在起步、刹车和意外事件的情况下,CACC车辆的存在对交通流动力学的影响. 研究结果表明,通过合理设计CACC跟驰系统的模型参数取值后,CACC车辆的存在一方面可以提高交通流运行的机动性与稳定性,另一方面可以使交通出行更加的安全和舒适. 此外,由于不同车队中CACC车辆的无线通讯拓扑结构会影响交通流的机动性与稳定性,对于 CACC车辆的无线通讯拓扑结构应慎重的设计与优化.  相似文献   

5.
基于智能网联车辆(Connected Autonomous Vehicle, CAV)跟驰特性,本文研究CAV跟驰模型.考虑多前车电子节气门角度反馈,构建CAV跟驰模型,并应用稳定性分析方法,推导所提模型稳定性判别条件.以考虑3辆前导车的CAV跟驰模型为例,设计数值仿真实验,分析不同CAV比例时混合交通流的安全性.模型稳定性分析表明:所提模型相比已有模型(CAV的T-FVD模型及常规车辆FVD模型)具备更优的稳定域,且考虑前车数量越多、多前车反馈权重系数越大,所提模型的稳定性越好;相同取值条件下,距离越远处的前车反馈权重系数对所提模型稳定性的影响越大.数值仿真表明,CAV有利于降低交通流的车辆尾部碰撞安全风险.  相似文献   

6.
未来协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆和传统车辆混合交通流的稳定性决定了CACC技术对交通拥堵、能耗排放的改善程度.鉴于此,研究不同CACC渗透率时这种混合交通流的稳定性.应用基于轨迹数据标定的IDM(Intelligent Driver Model,IDM)模型和由加州伯克利PATH实验室实车测试验证的CACC模型分别作为传统车辆跟驰模型和CACC车辆跟驰模型.依据传统车辆在扰动下的稳定性,确定高稳态速度和低稳态速度,并考虑两种车型相对数量、相对位置的随机性,设计数值仿真实验.实验结果表明,在高稳态速度下,不同CACC渗透率时混合车队均整体稳定;在低稳态速度下,当CACC渗透率较小时,车队整体不稳定,CACC渗透率需达到50%以上时,才有可能使得混合车队由不稳定转变为稳定.  相似文献   

7.
分析了自动驾驶汽车自适应巡航控制(Adaptive Cruise Control,ACC)和协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆跟驰模型,从系统控制原理、车车通信技术与车间时距方面阐述了ACC与CACC车辆的异同点;将目前主流ACC/CACC车辆跟驰模型分为3类:基于智能驾驶的车辆跟驰模型、加州伯克利大学PATH实验室车辆跟驰模型与基于控制论的车辆跟驰模型,总结3类车辆跟驰模型的建模思路与主要优缺点;从道路通行能力、交通安全和交通流稳定性3方面,分析了ACC/CACC车辆对交通流特性的影响,及其研究现状与未来发展趋势。研究结果表明:不同的ACC/CACC车辆跟驰模型对通行能力的影响存在较大差别,ACC/CACC车辆有利于提升交通安全性,但由于缺乏统一的安全性评价指标,难以量化ACC/CACC车辆对交通安全性的影响程度;小规模实车试验验证了ACC车辆具有不稳定的交通流特性,否定了ACC车辆稳定性数值仿真结果,而数值仿真试验和小规模实车试验均表明CACC车辆可较好提升交通流稳定性,因此,完全依赖于计算机仿真试验无法获得令人信服的结论,实车试验是ACC/CACC研究的必要途径;为了完善ACC/CACC在交通领域的研究,应构建不同ACC/CACC车辆比例下的混合交通流基本图模型、智能网联环境下的ACC/CACC车辆跟驰模型建模方法与ACC/CACC混合交通流稳定性解析方法。  相似文献   

8.
为研究含智能网联汽车(Connected and Automated Vehicle, CAV)和人工驾驶汽车(Regular Vehicle, RV)混行交通流下CAV跟驰行为的控制问题,考虑前后多车的速度、车头间距、速度差、 加速差等参数,采用分子动力学定量表达不同周边车辆对主体车的影响,得到可用于描述CAV在 混行交通流中的跟驰过程。稳定性分析结果表明,与全速度差模型相比,本文提出的考虑前后多车信息的CAV跟驰模型有利于提高交通流的稳定性。数值仿真与模型验证结果表明,与PATH 实验室的CACC(Cooperative Adaptive Cruise Control)模型相比,本文建立的CAV跟驰模型平均速度最大误差减小了0.19 m∙s-1 ,平均误差减小26.79%,拟合精度提高了0.91%。同时,在CAV和 RV组成的混行交通流中,随着CAV比例的逐渐增加,车队的平均速度和交通流量逐渐增加。迟滞回环曲线表明,与全速度差(Full Velocity Difference, FVD)模型相比,本文提出的CAV模型控制下的交通流稳定性更强。该模型可用于同质流或CAV与人工驾驶车辆等混行环境下的CAV跟驰控制,在目前开展混行实车实验困难的情况下,为混行交通流场景下的车辆控制及交通设施规划设计提供理论依据和模型支持。  相似文献   

9.
为研究网联自动驾驶车(connected autonomous vehicle, CAV)和人工驾驶车(human-pilot vehicle, HPV)所组成的异质交通流特性及公交车驾驶行为对环境的影响,首先,分析异质交通流中的4种跟驰模式:人工驾驶小汽车跟驰、人工驾驶公交车跟驰、自适应巡航控制(adaptive cruise control, ACC)跟驰和协同自适应巡航控制(cooperative adaptive cruise control, CACC)跟驰;接着,基于各跟驰模型的特点,构建车辆跟驰和换道的元胞自动机模型,综合考虑CAV车队特性、驾驶员与CAV各自反应时间特性以及HPV加塞特性,并利用跟驰模式判断参数融合不同跟驰模式特性,实现统一的模型表达;最后,仿真分析不同CAV渗透率下CAV排队强度及公交车换道行为对交通流的影响.结果表明:在一定的CAV渗透率下,促使CAV形成队列比单纯提高CAV渗透率更能有效提升道路通行效率;适量的公交换道有助于充分利用道路通行能力,过多的公交换道则会妨碍正常交通,公交换道对交通流造成的通行效率衰减随CAV渗透率的增大而减小;同步流状态...  相似文献   

10.
基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。   相似文献   

11.
考虑协作式巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆与自适应巡航控制 (Adaptive Cruise Control,ACC)车辆之间的退化机制,构建由CACC车辆、ACC车辆以及人工驾驶 车辆组成的混合车队。应用传递函数理论,推导混合车队在不同规模情况下的队列稳定性判别 准则,计算混合车队在多种情形下的队列稳定性情况,并设计数值仿真实验验证理论分析结果。 稳定性分析结果表明,所推导的混合车队队列稳定性准则能够从理论层面计算混合车队关于车 队规模与车流速度的队列稳定域,当混合车队中CACC车辆比例达到25.00%~41.17%及以上时, 混合车队可在全速度范围内实现队列稳定。数值仿真结果表明,混合车队头车产生的速度扰动 传递至上游CACC车辆时,CACC车辆可有效抑制速度扰动的波动幅度,使混合车队趋于稳定,验 证了理论分析的正确性。研究结果揭示了混合车队保持稳定时的CACC车辆与人工驾驶车辆的 比例结构。  相似文献   

12.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。   相似文献   

13.
为了提高网联信号交叉口车路协同控制对真实交通环境的适应性,以智能网联汽车与网联人工驾驶汽车混行的典型交通应用场景为研究对象,通过构建八相位网联信号交叉口,研究了混行环境下的交通信号和网联车辆轨迹车路协同优化控制方法;在对场景中的网联车辆运动学特性和跟驰行为进行建模的基础上,构建了一种混行车辆编队方法;基于混行车队模型、安全约束与燃油消耗模型,建立了基于滚动优化的交通信号-车辆轨迹协同优化控制方法;基于异步分层优化思路,将该协同控制问题分解为上层交通信号优化与下层车辆轨迹优化两方面,以交叉口车辆行驶延误时间和燃油消耗量为优化目标,利用遗传算法和“三段式”轨迹优化法分别对交通信号优化问题与车辆轨迹优化问题进行求解;对不同稳态车速与智能网联汽车渗透率下构建的混行交通流的稳定性进行了验证,并通过仿真测试分析了所提出的协同优化控制方法的控制效能与关键参数对控制效能的影响。分析结果表明:在不同交通流量与智能网联汽车渗透率下,提出的控制方法均可有效提升交叉口通行效率与燃油经济性;在完全渗透环境下,较固定配时交通信号控制方法最高可分别提升57.3%和13.3%;随着智能网联汽车渗透率的增加,其控制效能不断提高,较无渗透条件最高可分别提升42.0%和14.2%;即使智能网联汽车渗透率仅达到20%,较无渗透条件也可以在交通效率方面实现20.4%的显著改善;较长的交通信号周期与较短的网联人工驾驶汽车驾驶人反应时间有助于协同控制效能的提升。   相似文献   

14.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。   相似文献   

15.
鉴于油耗与节约能源和车辆尾气排放直接相关,探究自动驾驶车辆对油耗的影响. 以手动驾驶车队与自动驾驶车队为数值仿真对象,在交通震荡环境下设计数值仿真实验. 对车队的车辆数量,车队初始速度,以及自动驾驶车辆的车间通信延时做参数敏感性分析. 基于机动车比功率的油耗评价模型,对仿真结果进行统计;相比于手动驾驶车队,计算自动驾驶车队平均油耗率的降低. 从交通流稳定性角度考察油耗降低与稳定性状态转变之间的内在关联性. 研究结果表明,自动驾驶车辆对油耗的降低幅度与车队初始速度有关,与交通流稳定性之间存在定性的影响关系,交通流的平稳性有利于显著改善车辆油耗降低的幅度. 研究结果可为大规模自动驾驶背景下的油耗控制策略提供理论参考.  相似文献   

16.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号