首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
文章通过Carsim搭建汽车模型并配置道路障碍物等环境信息,并通过模拟传感器输出车道线、障碍物和本车运动状态信息,并通过接口配置发送到Simulink,再通过在Simulink中搭建自动变道的路径规划和跟踪控制算法输出方向盘转角信号给Carsim,实现对汽车自动变道的闭环仿真。  相似文献   

2.
In the near future, drivers will more and more share vehicle guidance with assistance systems. This contribution provides a potential field-based approach to the underlying motion planning problem. In doing so, the concept of elastic bands, known from robotics, is extended to automotive applications. Contrary to robotic applications, extrapolation routines anticipating the motion of the surrounding traffic are incorporated in the motion planning. New in this paper is the distinction of different types of obstacles such as traffic staying in its lane and traffic intending to depart from it. Beyond that, the motion planning adapts to the driver's commands. The driver can be included in the overall control loop by means of a haptic interface generating a torque that depends on the difference of the actual steering angle and the steering angle necessary to follow the planned trajectory. However, this contribution focuses only on the underlying motion planning procedure.  相似文献   

3.
王姝  赵轩  余强  余曼 《中国公路学报》2022,35(1):334-349
为了使双电机驱动电动车在车辆稳定性控制过程中能够精确解读驾驶意图,使车辆实际行驶状态与驾驶意图期望的车辆行驶状态尽可能相符合,提出一种基于驾驶人意图辨识的稳定性控制策略.利用基于支持向量机递归特征消除(SVM-RFE)得到的特征参数构建基于长短期记忆(LSTM)模型的驾驶人转向意图辨识模型;基于转向意图识别结果,以方向...  相似文献   

4.
介绍了应用Pro/E机构运动仿真模块进行运动仿真的工作流程.通过应用Pro/E机构运动仿真模块对双前轴转向传动机构进行匹配设计的实例,论述了商用车双前轴转向传动机构的设计理论要求、初步的传动机构实体建模方法以及转角特性分析方法、理论模型与实体模型的转角特性数据处理与分析,以及实体模型的优化设计方法,并简要介绍了转向传动机构与悬架系统的运动十涉分析方法.  相似文献   

5.
为了提高商用车的行驶安全性,避免因驾驶人的分心驾驶出现车辆偏离车道的问题,提出一种基于电液复合转向系统的商用车车道保持策略;在建立电液复合转向系统模型、二自由度车辆模型、预瞄驾驶人模型的基础上,设计基于驾驶人在环的MPC和ADRC串级的车道保持控制策略。首先,采用MPC算法将车辆横向位置控制的最优问题转化为二次规划求得目标前轮转角;然后,考虑电液复合转向系统的不确定和干扰问题,利用ADRC算法对目标转向盘转角和实际驾驶人的转向盘转角差值以转矩信号的形式进行补偿。同时研究车道保持系统对驾驶人的干预问题,引入干预系数的概念,采用模糊控制的方法,将驾驶人手力和车辆的运动状态作为输入变量,干预系数作为输出变量,保证整车行驶安全性的前提下减小车道保持辅助系统对驾驶人的干预。最后,通过MATLAB/Simulink仿真和硬件在环试验对所设计的控制策略进行验证。研究结果表明:所设计的基于商用车电液复合转向系统的车道保持策略能够及时地纠正因驾驶人的分心驾驶而导致车辆偏离所在行驶车道的行为,特别是在弯道处出现驾驶人转向不足或过度转向的情况时,能够将车辆维持在车道线之内,保证车辆的行驶安全性,同时由于干预系数的设计,使得驾驶人也有良好的人机交互体验感。  相似文献   

6.
Dynamic game theory brings together different features that are keys to many situations in control design: optimisation behaviour, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In the presented methodology, vehicle stability is represented by a cooperative dynamic/difference game such that its two agents (players), namely the driver and the direct yaw controller (DYC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the DYC control algorithm is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degrees-of-freedom vehicle-handling performance model is put into discrete form to develop the game equations of motion. To evaluate the developed control algorithm, CarSim with its built-in nonlinear vehicle model along with the Pacejka tire model is used. The control algorithm is evaluated for a lane change manoeuvre, and the optimal set of steering angle and corrective yaw moment is calculated and fed to the test vehicle. Simulation results show that the optimal preview control algorithm can significantly reduce lateral velocity, yaw rate, and roll angle, which all contribute to enhancing vehicle stability.  相似文献   

7.
《JSAE Review》1994,15(1):45-51
At the center of gravity of a vehicle, the control function for rear steering can cancel the side slip angle which varies as the running speed is changed. An instantaneous center of vehicle motion is controlled, employing rear steering. Even though the running speed of the vehicle is changed, the side slip angle remains as it was, if a relation of the position of the instantaneous center of vehicle motion to the vehicle does not change. Furthermore, taking account of an instantaeous center of yaw motion will enable us to select how much the side slip angle should be.  相似文献   

8.
丁能根  王建 《汽车工程》2004,26(1):61-64
用GPS导航装置实测了移线轨迹并建立了相应的多项式位移模型。该位移模型不仅与实测移线轨迹符合得较好,而且符合实际转向盘转角变化规律。移线综合评价模型中分析了移线难度和移线安全性。分析结果表明,移线前提高车速并合理选择移线车距是有利的。  相似文献   

9.
This study proposes a steering control method to improve motorcycle handling and stability. Steer-by-wire (SBW) technology is applied to the motorcycle's steering system to remove characteristic difficulties of vehicle maneuvers. By examining computer simulation using a simplified motorcycle model, the actual rolling angle of the SBW motorcycle is controlled to follow the desired rolling angle intended by the rider. A state feedback control such as linear quadratic control gives the SBW vehicle a good follow-through performance compared with proportional-derivative control because it can decouple rolling motion from the other motions, which affect the rolling motion in the strongly coupled motorcycle system.  相似文献   

10.
为提高汽车的主动安全性并克服现有的汽车偏离车道报警系统所存在的结构复杂和成本高等缺点,文章设计了一种基于Matlab的汽车偏离车道报警系统,利用摄像头获取车道图像并实时传给车内计算机系统,经过对图像一系列的处理分析判断汽车是否偏离车道而进行报警。经验证,该系统能够实时检测出左右车道标志线,可以根据车道夹角法判断汽车是否偏离车道,满足了汽车偏离车道报警的需要。该系统结构简单高效,能显著提高汽车行驶的主动安全性。  相似文献   

11.
介绍了一种整体式转向梯形机构的空间运动学分析方法,并利用该方法计算了某轻型货车的前轴内、外轮转角关系,计算结果与实测的该车前轴内、外轮转角关系曲线吻合较好。应用不同的整体式转向梯形机构的平面分析方法对同一辆货车进行了分析,对所得分析结果与试验结果进行比较,结果表明我国目前采用较多的汽车设计教材中介绍的转向梯形分析方法误差较大。  相似文献   

12.
无人驾驶汽车路径跟踪控制是无人驾驶汽车运动控制的核心所在,目前常用的路径跟踪模型主要以路径跟踪精度为主要控制目标,在很大程度上忽略了无人驾驶汽车的乘坐舒适性和控制的拟人程度。为了研究无人驾驶汽车路径跟踪控制算法的拟人程度并提高乘坐舒适性,基于转向几何学、汽车运动学和汽车动力学理论建立实车中常用的4种路径跟踪模型,提出以路径跟踪过程中的最大横向加速度aymax和方向盘转角平方和δw2共同表征路径跟踪模型的拟人程度和横向乘坐舒适性。基于驾驶人实车换道试验数据,建立多项式拟人换道参考路径,搭建CarSim/Simulink联合仿真模型,并对其进行不同车速下的车辆换道试验。研究结果表明:路径跟踪模型的横向循迹偏差均会随着车速的提高而增加,但都能较好实现路径跟踪;带预瞄路径跟踪模型和动力学前馈最优LQR路径跟踪模型拟人程度较好;汽车运动学路径跟踪模型的乘坐舒适性最差,方向盘修正激烈;在100 km·h-1,aymax>0.7 m·s-2,δw2>2.7×103时,拟人程度最差;不带预瞄路径跟踪模型循迹精度最高,且拟人程度最高,乘坐舒适性最好,120 km·h-1时,aymax ≤ 0.5 m·s-2。  相似文献   

13.
Driver drowsiness is a major safety concern, especially among commercial vehicle drivers, and is responsible for thousands of accidents and numerous fatalities every year. The design of a drowsiness detection system is based on identifying suitable driver-related and/or vehicle-related variables that are correlated to the driver’s level of drowsiness. Among different candidates, vehicle control variables seem to be more promising since they are unobtrusive, easy to implement, and cost effective. This paper focuses on in-depth analysis of different driver-vehicle control variables, e.g., steering angle, lane keeping, etc. that are correlated with the level of drowsiness. The goal is to find relationships and to characterize the effect of a driver’s drowsiness on measurable vehicle or driving variables and set up a framework for developing a drowsiness detection system. Several commercial drivers were tested in a simulated environment and different variables were recorded. This study shows that drowsiness has a major impact on lane keeping and steering control behavior. The correlation of the number and type of accidents with the level of drowsiness was also examined. Significant patterns in lateral position variations and steering corrections were observed, and two phases of drowsiness-related degradation in steering control were identified. The two steering degradation phases examined are suitable features for use in drowsiness detection systems.  相似文献   

14.
为了防止车辆偏离车道导致交通事故的发生和避免车道偏离防避系统(Lane Departure Avoidance Systems,LDAS)对驾驶人行为不必要的干预,提出基于中心区操纵特性阈值法和基于D-S(Dempster-Shafer)证据理论的车辆偏离车道驾驶人意图识别准则,并运用CarSim/Simulink联合仿真对比2种识别准则的有效性。建立转向盘角速度为输入的车路模型,设计LDAS滑模转向控制器,基于预瞄点的侧向偏移量和横摆角速度设计LDAS的期望横摆角速度观测器,并与基于道路曲率和预瞄点侧向偏移量的期望横摆角速度的LDAS进行性能对比。运用相平面法确定保证LDAS车辆稳定性的前轮转向角最大值,并基于CarSim/LabVIEW RT硬件在环试验平台验证基于BP神经网络训练获得D-S证据理论的初始概率赋值的驾驶人意图决策算法的有效性。结果表明:所提出的识别准则能够及时识别车辆偏离车道时的驾驶人意图,为LDAS控制器介入赢得了宝贵的时间,所设计的期望横摆角速度观测器具有很好的稳定性,所提出的方法能够有效避免车辆偏离车道。  相似文献   

15.
ABSTRACT

This paper introduces the concept of managing air in commercial vehicle suspensions for reducing body roll. A conventional pneumatic suspension is re-designed to include higher-flow air hoses and dual levelling valves for improving the dynamic response of the suspension to the body roll, which commonly happens at relatively low frequencies. The improved air management allows air to get from the air tank to the airsprings quicker, and also changes the side-to-side suspension air pressure such that the suspension forces can more readily level the vehicle body, much in the same manner as an anti-roll bar (ARB). The results of a multi-domain simulation study in AMESim and TruckSim indicate that the proposed suspension configuration is capable of providing balanced airflow to the truck’s drive-axle suspensions, resulting in balanced suspension forces in response to single lane change and steady-state cornering steering maneuvers. The simulation results further indicate that a truck equipped with the reconfigured suspension experiences a uniform dynamic load sharing, smoother body motion (less roll angle), and improved handling and stability during steering maneuvers commonly occurring in commercial trucks during their intended use.  相似文献   

16.
Yaw rate and side-slip control considering vehicle longitudinal dynamics   总被引:1,自引:0,他引:1  
Most conventional vehicle stability controllers operate on the basis of many simplifying assumptions, such as a small steering wheel angle, constant longitudinal velocity and a small side-slip angle. This paper presents a new approach for controlling the yaw rate and side-slip of a vehicle without neglecting its longitudinal dynamics and without making simplifying assumptions about its motion. A sliding-mode controller is used to develop a differential braking controller for tracking a desired vehicle yaw rate for a given steering wheel angle, while keeping the vehicle’s side-slip angle as small as possible. The trade-off that exists between yaw rate and side-slip control is described. Conventional and proposed algorithms are presented, and the effectiveness of the proposed controller is investigated using a seven-degree-of-freedom vehicle dynamics model. The simulation results demonstrate that the proposed controller is more effective than the conventional one.  相似文献   

17.
四轮转向汽车自适应模型跟踪控制研究   总被引:13,自引:0,他引:13  
屈求真  刘延柱  张建武 《汽车工程》2000,22(2):73-76,128
使用单点预瞄驾驶员模型,针对确定性汽车模型探讨了4WS汽车在单移线行驶过程中后轮的最优转向控制规律。通过引入状态反馈,改善了整车的转向特性,将实际汽车的前后轮胎侧刚度及外界干扰视为有界的不确定性参数,采用自适应模型跟踪变结构控制方法,使得不确定的实际汽车模型能够很好地跟踪确定的最优理论模型,仿真结果表明该方法的可行性,控制系统能够有效地克服参数摄动及外界干扰对系统稳定性的影响。  相似文献   

18.
《JSAE Review》2002,23(3):309-315
This study proposes a control system to improve vehicle handling and stability under severe driving conditions by actively controlling the front steering angle and the distribution of braking forces on four tires. With the application of a model-matching control technique, this proposed control system makes the performance of the actual vehicle model follow that of an ideal vehicle model with consideration of nonlinearity of tire characteristics. Finally, this paper investigates the effectiveness of control system during the following conditions: braked cornering, lane change and side wind disturbance.  相似文献   

19.
Additional 4WS and Driver Interaction   总被引:1,自引:0,他引:1  
This investigation is based on a complex 4-wheel vehicle model of a passenger car that includes steering system and drive train. The tyre properties are described for all possible combined longitudinal and lateral slip values and for arbitrary friction conditions. The active part is an additional steering system of all 4 wheels, additionally to the driver's steering wheel angle input. Three control levels are used for the driver model that thereby can follow a given trajectory or avoid an obstacle.

The feedback control of the additional 4 wheel steering is based on an observer which can also have adaptive characteristics. Moreover a virtual vehicle model in a feedforward scheme can provide desired steering characteristics.

To get information for critical situations a cornering manoeuvre with sudden u-split conditions is simulated. Further a similar manoeuvre is used to evaluate the reentry in a high friction area from low friction conditions. And finally the performance of the controller is shown in a severe lane change manoeuvre.  相似文献   

20.
Lane change maneuver is one of most riskiest driving tasks. In order to increase the safety level of the vehicles during this maneuver, design of lane change assist systems which are based on dynamics behavior of driver-vehicle unit is necessary. Therefore, modeling of the maneuver is the first step to design the driver assistance system. In this paper, a novel method for modeling of lateral motion of vehicles in the standard double-lane-change (DLC) maneuver is proposed. A neuro-fuzzy model is suggested consisting of both the vehicle orientation and its lateral position. The inputs of the model are the current orientation, lateral position and steering wheel angle, while the predicted lateral position and orientation of the vehicle are the outputs. The efficiency of the proposed method is verified using both simulation results and experimental tests. The simulation and experimental maneuvers are performed in different velocities. It is shown that the proposed method can effectively reduce the undesirable effects of environmental disturbances and is significantly more accurate in comparisons with the results in the recent available papers. This method can be used to personalize the advanced driver assistance systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号