首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
建立3辆车编组高速列车气动噪声计算模型,包括1辆头车、1辆中间车、1辆尾车、6个转向架和1个受电弓,利用标准k-ε湍流模型和大涡模拟分别计算列车的外部稳态和瞬态流场,并基于瞬态流场用FWH方法计算高速列车远场气动噪声。计算单个转向架、全部6个转向架、车体头部、车体尾部、车体中间部、全部车体、受电弓、列车整体分别为噪声源时的远场辐射噪声,分析这些噪声源对远场噪声评估点的总声压级,以及不同噪声源对远场噪声的贡献,以验证局部气动噪声源对远场辐射噪声与整体噪声源之间的叠加关系。计算结果表明:车体是高速列车远场辐射噪声的主要噪声源,其次是受电弓,转向架对远场辐射噪声影响相对较小;从局部噪声源来看,车体头部、受电弓、头部第1个转向架是高速列车远场辐射噪声的主要噪声源;各局部气动噪声源远场噪声的叠加值与整体气动噪声源远场噪声一致,验证了高速列车整体噪声源与其包括的各局部噪声源符合声源叠加原理。  相似文献   

2.
高速铁路噪声源区划及各区域声源贡献量分析   总被引:2,自引:1,他引:1  
研究高速铁路噪声源区划方法并分析各区域声源贡献量,对高速铁路噪声治理有重要意义。基于高速铁路噪声源辨识现场测试,分析得到噪声源的位置和幅值。将噪声源按高度划分为轮轨区、车体下部、车体上部、集电系统和桥梁结构等5个区域,进一步将车体上部沿线路方向划分为车头区和非车头区,将集电系统区域沿线路方向划分为受电弓区和接触网区。根据声波能量叠加原理计算每个区域噪声源辐射功率,研究各个区域声源贡献量。分析结果表明,列车以300 km/h运行时,轮轨区噪声占48%,车体下部噪声占25%,合计占总噪声的73%,对高速铁路辐射噪声起主导作用。  相似文献   

3.
基于我国高速铁路噪声源定量化识别分析结果,研究不同速度条件下动车组主要噪声源分布及变化规律,发现列车高速运行时轮轨噪声和气动噪声均为主要噪声源,且2种声源存在严重混叠,既有测试技术无法有效区分。针对既有轮轨噪声计算时声源过度简化问题,利用1∶1全尺寸高速轮轨滚动试验台开展从100 km/h提速至350 km/h的滚动噪声试验,研究纯轮轨激励条件下声辐射特性,构建反映轮对运动轨迹、相干声源特性的轮轨滚动噪声预测模型。现场试验表明,模型预测值和现场实测值在关键频带一致,列车通过等效连续A声级的预测值和实测值之差小于0.5 dB(A),模型精度良好。  相似文献   

4.
高速铁路声屏障声学计算模式研究   总被引:2,自引:0,他引:2  
基于多通道阵列式声源识别系统和多通道噪声振动实时采集分析系统,对京津城际和京沪高速铁路列车运行状态下的噪声源、空间声场分布以及声屏障降噪效果进行测试和分析。将高速列车声源等效为下部噪声和上部噪声两部分:下部噪声以轮轨噪声和车体气动噪声为主,其声源等效位置确定为轨面以上0.6m处;上部噪声以弓网噪声为主,其声源等效位置确定为轨面以上3.3m处。由此提出基于双声源作为等效声源和以1250Hz作为等效频率的高速铁路声屏障声学计算模式,给出声屏障插入损失和加长量修正计算公式,所得到声屏障的声学计算结果与实测结果吻合。  相似文献   

5.
在目前已运营高速铁路噪声源特性测试的基础上,对高速铁路声源组成、声场分布特性、频谱特性、距离衰减特性进行分析研究,提出高速铁路声环境影响评价与普通铁路的不同之处,对高速铁路声环境影响评价中声源位置的确定、高速铁路桥梁段噪声预测关注事项、距离衰减预测等提出了建议;另外,通过总结分析目前已运营高速铁路沿线噪声等效声级测试结果,结合中国高速铁路列车运行速度高、运营密度大等特点,提出中国高速铁路声环境影响评价宜执行的噪声标准。  相似文献   

6.
350 km·h-1高速列车噪声机理、声源识别及控制   总被引:5,自引:0,他引:5  
为了考察350 km·h-1高速列车在运行状态下的车外噪声水平、主要声源及其源强分布特性,根据国内外高速列车噪声理论和试验研究经验,在列车和线路状况满足ISO3095-2005标准相关要求的前提下,在京津城际铁路选取现场测试工点,采用多通道阵列式噪声数据采集分析系统,对京津城际铁路高速列车噪声进行现场测试.测试数据分析结果表明:350 km·h-1高速列车车外辐射噪声的主要声源为轮轨接触部位、转向架、受电弓及其底座以及车辆连接处的气动噪声;对车辆上不同位置测得的声暴露级按大小排序,前4名的依次为头车轮轨接触位置、第2节车辆受电弓位置、第2节车辆的轮轨接触位置、头车和第2节车辆上部的气动噪声.由此提出350 km·h-1高速列车噪声的控制策略及措施.  相似文献   

7.
高速铁路列车运行噪声特性研究   总被引:3,自引:0,他引:3  
在对我国高速铁路噪声实测的基础上,分析了我国高速铁路噪声的特性。动车组高速运行时,在桥梁区段峰值均出现在低频段(f=31.5~63Hz);路基区段的噪声频谱呈宽频特性,在低频段(f=31.5—63Hz)和中高频段(f=500—8000Hz)声能量均较为集中。高速铁路列车辐射噪声随速度的关系式与国外辐射噪声随速度的关系基本一致,当高速动车组运行速度大于300km/h后,轮轨噪声、空气动力噪声和集电系统噪声成为主要声源。高速列车辐射噪声几何衰减基本遵守距离加倍,声级衰减3—4dB(A)的规律。  相似文献   

8.
为了考察350km·h^-1高速列车在运行状态下的车外噪声水平、主要声源及其源强分布特性,根据国内外高速列车噪声理论和试验研究经验,在列车和线路状况满足ISO3095--2005标准相关要求的前提下,在京津城际铁路选取现场测试工点,采用多通道阵列式噪声数据采集分析系统,对京津城际铁路高速列车噪声进行现场测试。测试数据分析结果表明:350km·h^-1高速列车车外辐射噪声的主要声源为轮轨接触部位、转向架、受电弓及其底座以及车辆连接处的气动噪声;对车辆上不同位置测得的声暴露级按大小排序,前4名的依次为头车轮轨接触位置、第2节车辆受电弓位置、第2节车辆的轮轨接触位置、头车和第2节车辆上部的气动噪声。由此提出350km·h^-1高速列车噪声的控制策略及措施。  相似文献   

9.
发展高速铁路中的噪声治理及研究   总被引:3,自引:0,他引:3  
以我国高速铁路发展为背景,结合国外发展高速铁路的实践,论证了控制高速列车辐射噪声的必要性,分析了我国发展高速铁路中关于环境噪声的问题,提出高速列车噪声治理的一些措施,并指出了基于我国国情开展高速铁路噪声治理应进一步研究的关键问题。  相似文献   

10.
高速铁路沿线噪声的预测方法   总被引:2,自引:1,他引:1  
刘岩  张艳 《中国铁道科学》2002,23(5):131-134
从点声源的理论出发,对列车运动噪声进行预测计算,采用一列车通过时的单发暴露声级、时间特性的最大声压级和一定时间内的等效声级等作为噪声评价量,编制了相应的可视化软件,并将预测结果与日本预测方法进行对比,证明该软件预测计算的准确性及采用点声源理论进行预测评价的可行性。  相似文献   

11.
通过对CIT500试验列车200~350km/h速度级车外噪声源图谱试验研究,获得高速列车的辐射噪声、表面噪声源图谱与其运行速度的依赖关系,发现转向架区域噪声与运行速度3次方成正比,以轮轨噪声为主;车头、风挡、受电弓区域噪声与运行速度6次方成正比,以气动噪声为主;气动噪声与轮轨噪声均为中低频宽频噪声,具有较大混叠区,但是气动噪声更趋向低频;车外总噪声源频谱谱型具有双峰特点,类似两条抛物线叠加,左抛物线表征气动噪声频谱谱型,右抛物线表征轮轨噪声频谱谱型。进而从声源性质出发,通过声源频谱分析和声学相似讨论,构建车外噪声源频谱分解经验模型,比较准确反映车外噪声源成分随运行速度的变化规律。车外噪声源频谱分解经验模型有助于精确认识我国高速列车噪声源结构和发声机理。  相似文献   

12.
高速铁路建设过程中如何治理噪声污染的研究   总被引:1,自引:0,他引:1  
本文结合国外发展高速铁路的实践经验,以我国高速铁路发展为背景,分析了我国发展高速铁路中关于环境噪声的问题,论证了控制高速铁路列车辐射噪声的必要性,提出高速列车噪声治理的一些措施,并指出了基于我国国情开展高速铁路噪声治理应进一步研究的关键问题。  相似文献   

13.
分析了我国建设秦沈客运专线和发展高速铁路中关于环境噪声的问题,论证了控制高速铁路列车辐射噪声的必要性,同时结合秦沈客运专线提出高速列车噪声治理的一些措施,并指出了基于我国国情开展高速铁路噪声治理应进一步研究的关键问题。  相似文献   

14.
为推动噪声地图在高速铁路噪声管理中的应用,研究噪声预测模型与地理信息系统(GIS)相结合的高速铁路噪声地图绘制技术。首先,根据高速铁路噪声源分布特征和线路结构特征,优化高速铁路多等效声源预测模型和声屏障插入损失计算方法;其次,在GIS软件中搭建某高速铁路三维地理信息模型,二次开发基于该模型的铁路噪声预测技术;然后,进行离散节点的噪声计算,并通过空间插值绘制连续的噪声分布地图。研究结果表明:采用该技术绘制的我国某高速铁路噪声地图与实测结果对比误差小于1 dB(A),验证了该高速铁路噪声地图的准确性和实用性,可作为铁路噪声管理部门制定噪声控制对策的参考依据。  相似文献   

15.
高速列车作用下箱梁桥箱内振动噪声分布研究   总被引:2,自引:2,他引:0  
为解决高速铁路线上箱梁桥日常检查与列车运营之间的冲突,探讨列车正常运行时箱梁内部噪声对日常检查工作造成的影响,桥梁结构振动辐射低频噪声会对检测人员造成极大危害,研究箱梁内部噪声分布有着重要的现实意义。结合车桥耦合振动和声传播理论,通过建立桥梁振动辐射有限元-边界元的求解体系,以78 m变截面混凝土箱梁桥作为实体模型,得出箱内瞬态噪声声场特性。分析结果表明,在车桥耦合振动所产生的箱内声辐射噪声分析中,变截面处声压值增大,且列车交汇产生的声压值大于单向行车产生的声压值。当箱内添加吸声材料后,可降低噪声水平,保障检测人员身体健康。  相似文献   

16.
高速铁路隧道内空气流场的流动显示   总被引:2,自引:1,他引:1  
琚娟  高波 《铁道建筑》2003,(10):50-52
高速列车通过隧道时空气会在隧道洞口及洞内产生复杂的非定常流场分布。运用流动显示技术,可以直观地观察到隧道内流场的运动情况。文章从高速铁路隧道空气动力学问题和各种流动显示方法的特点出发,提出高速铁路隧道内空气流场流动显示方法的建议。  相似文献   

17.
在高速列车车身长度保持一定的情况下,不同长度的车头会对列车整体的气动特性(阻力、升力)、列车表面噪声源分布变化、远声场特性(A计权声压级、脉动声压、声场频率等)造成不同的变化。进行三维建模之后,宽频噪声模型采用RNG k-epsilon模型做定常计算,FW-H声学模型采用大涡模拟(LES)模型进行瞬态计算,对时速为350km·h-1,5~13m不同长度车头的高速列车简化模型进行数值模拟,分析气动特性和声场特性。结果表明:高速列车的整车阻力随车头长度增加先呈现减小趋势,当车头长度达到13m时整车阻力开始增大;高速列车远场声压级随车头长度的增加呈现增加态势。综合阻力与远场声压级随车头长度的非线性变化规律,在高速铁路简化模型下最佳车头长度为9m,可保证在减小行车阻力同时控制噪声对环境的污染。研究结论可为高速列车的减阻降噪提供参考。  相似文献   

18.
列车在高速会车时产生的空气压力波会给交会车辆的侧窗造成很大的冲击,有可能出现破窗事故,给乘客和列车运行带来安全隐患。基于三维、非定常两方程湍流模型,利用计算流体软件Fluent,对某型地铁车辆与不同型号的铁路高速列车(CRH380A、CRH2、CRH3型)交会时的空气动力学性能进行了数值仿真,得到侧窗上的会车压力波变化曲线。仿真计算结果表明:在地铁列车与铁路高速列车的交会过程中,地铁列车所受到的侧力远大于高速铁路列车所受到的侧力,交会产生的瞬变压力波对地铁列车侧窗的影响也更大。当地铁列车与CRH380A型高速列车交会时,与其和其它两种型号的列车交会相比,地铁列车侧窗所受到的压力波幅值最小,而当地铁列车与CRH2型铁路列车或CRH3型铁路列车交会时,地铁列车侧窗所受到的压力波幅值均较大,其波动的峰峰值也更大。  相似文献   

19.
为实现高速铁路钢轨波磨里程覆盖式、高频次、快速测量,提出基于波噪比的钢轨波磨快速检测方法。采用便携式添乘仪检测高速列车车体振动和车内噪声数据,提出基于车体纵向加速度进行数值积分来计算列车速度和里程,采用曲线地段车体摇头角速度里程与台账里程的偏差值修正速度积分误差。利用提取的里程修正后车厢噪声数据与钢轨波磨对应的400~700 Hz频带成分,计算频带能量占噪声总能量的比值,并获取波噪比超限时的钢轨波磨波长和里程。结合高速列车实测数据分析,研究结果表明:速度修正后列车定位里程最大误差为87 m,对波磨比大于0.3的线路区段进行钢轨波磨波形测量和轴箱加速度振动能量比分析,钢轨波磨波长范围为53~57 mm,实测波长为53 mm,验证了该方法的正确性,为高速铁路钢轨波磨的快速测量提供技术支撑。  相似文献   

20.
轮轨噪声是铁路主要的噪声源。针对高速铁路轮轨噪声辐射问题,综合运用车辆—轨道耦合动力学理论与噪声辐射理论,建立高速铁路轮轨噪声预测模型,应用数值仿真的方法研究高速铁路轮轨噪声产生机理、辐射特性、传播规律以及控制技术。主要研究内容和结论如下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号