首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以大西客运专线为研究背景,基于动力有限元数值模拟和正交试验设计,研究了地下水位差异和不同地基条件下跨地裂缝带高铁路基的动力响应及CFG桩对地基加固效果的影响,结果表明:路基动应力和加速度响应在地裂缝带处出现较大波动,路堤中动应力沿深度方向衰减近50%,加速度衰减近70%;上、下盘地下水位差导致地基动应力和加速度幅值出现明显差异;CFG桩降低了路堤加速度和路基下部动应力,且动应力降低幅度要大于加速度;对于动应力,桩间距的影响最大,桩长次之,桩径最小;对于加速度,桩间距的影响最大,桩径次之,桩长最小;地基优化加固方案为:上盘桩间距1. 2 m,桩长8. 0 m,桩径0. 3 m;下盘桩间距1. 2 m,桩长16 m,桩径0. 6 m。研究结果可为跨地裂缝带高铁路基设计提供参考。  相似文献   

2.
列车速度对车辆—轨道—路基系统动力特性的影响   总被引:1,自引:0,他引:1  
根据列车运行的实际情况,将轨道一路基作为参振子结构纳入车辆计算模型,建立车辆、钢轨、轨枕、道床、路基和地基为一体的二系垂向耦合动力分析模型,分析列车速度变化对车辆运行品质、动位移以及路基动应力的影响.结果表明:车体加速度、动轮载和轮重减载率均随车速的提高而增大,呈线性分布;具有二系悬挂的高速列车通过有砟轨道路基结构时,列车的安全性及舒适度均能满足要求;系统动位移受速度影响较小;路基面动应力随速度的提高而增大,并在横向呈马鞍形分布,在纵向呈抛物线形分布;路基动应力沿路基深度方向衰减较快,在基床表面下3m处,动应力只有基面的16%左右.研究结果与已有部分研究结论吻合较好,表明模型具有较高的可靠性.  相似文献   

3.
弹性长枕无砟轨道垂向动力学计算分析   总被引:2,自引:0,他引:2  
建立弹性长枕无砟轨道的梁—梁—板模型,计算垂向位移、加速度与行车速度的关系,扣件瞬时上拔力与行车速度的关系,垂向位移、加速度与扣件、枕套和路基刚度的关系,垂向位移、加速度与长枕、道床板质量的关系等;分析无砟轨道弹性长枕在不同扣件、枕套、地基刚度和不同弹性长枕、道床板质量下的动力响应;找出扣件、枕套、地基刚度及弹性长枕、道床板质量与垂向速度、加速度、轨枕侧滚等的关系。在弹性长枕、道床板质量和扣件、枕套、地基刚度不变情况下,计算列车不同速度下各垂向动力响应,找出列车速度与垂向位移、加速度的关系。  相似文献   

4.
"抱轨"行驶是跨座式单轨交通的一个显著特点.针对单轨列车与双层桥面钢桁梁斜拉桥的车桥耦合动力性能,以主跨468 m牛田洋大桥为工程背景,基于ANSYS及SIMPACK等软件建立车桥空间耦合动力模型开展联合仿真,研究不同行车速度、不同列车特性下的车、桥动力响应,并对行车安全性等进行了评估.研究结果表明:列车在通过桥梁时的竖向动力效应较弱,位移冲击系数约在1.1以内,且桥梁竖、横向位移响应均与车速无显著联系;竖向位移随过桥车辆数目的增加而增大,横向位移在单线行车时明显大于双线对开工况;桥梁与车体振动加速度均随车速递增,且车体横向振动程度大于竖向;跨座式单轨列车在列车正常行驶速度100 km/h以内通过该大跨度斜拉桥时,桥梁的动力性能优良,桥上列车具备良好的乘坐舒适性.  相似文献   

5.
高速铁路板式无砟轨道-路基结构动力特性研究   总被引:6,自引:0,他引:6  
马学宁  梁波  高峰 《铁道学报》2011,33(2):72-78
针对列车走行的实际情况,将板式无砟轨道-路基作为参振子结构纳入车辆计算模型,建立包含车辆、钢轨、板式轨道和路基为一体的二系垂向耦合动力分析模型,分析列车速度对车辆运行品质、系统动位移以及动应力的影响。结果表明:车体加速度、动轮载和轮重减载率均随车速的提高而增大,呈线性分布,当列车高速通过无砟轨道-路基结构时,列车运行的安全性和舒适度指标都能满足要求;系统动位移受速度影响较小;轨道板易发生疲劳破坏,需采用双层、双向配筋;路基面动应力随速度的提高而增大,但数值比有砟轨道的小;路基动应力沿路基深度方向衰减较慢,在基床表面下3 m处,动应力只有基面的25%左右;无砟轨道的基床加速度远小于有砟轨道的加速度值,表明无砟轨道结构可以有效地改善列车荷载对路基基床的振动作用。  相似文献   

6.
针对高速铁路的桥涵与临近路基由于存在材料和沉降的差异形成的刚度和几何不平顺,对路涵过渡段的动态响应和影响范围进行研究。本文建立"车辆-轨道-过渡段"垂向耦合动力模型,研究过渡段路基的动态响应特征,并与京沪高速铁路廊坊段路涵过渡段现场实测值进行对比。结果表明,当运行速度小于300km/h时,过渡段基床动应力、加速度、垂向位移等随速度增加而增大;在300km/h时动应力、加速度出现最大值,动位移随行车速度呈线性增大;从动应力、加速度的影响范围看,运行速度在300km/h以下时路涵过渡段影响范围为20~25m,300km/h及以上时,过渡段长度达到30~35m。当设计速度超过300km/h时,应适当加长路涵过渡段长度。  相似文献   

7.
为探究轨道-路基结构的动力响应及结构存在损伤时对系统动力响应的影响,以速度350 km/h的高速铁路无砟轨道-路基结构为研究对象,建立无砟轨道-路基-地基大耦合的全尺寸三维数值模型,考虑CA砂浆黏弹特性与土体材料非线性,模拟轨道-路基系统在10 s动荷载作用下竖向动位移、动应力及动加速度的变化规律.研究结果表明:考虑C...  相似文献   

8.
铁路客运专线路涵过渡段动力特性试验研究   总被引:1,自引:1,他引:0  
通过对秦沈铁路客运专线钢筋混凝土盖板涵沈端路涵过渡段DK47+076(下行线)进行动力响应现场测试和沉降观测,分析了级配碎石路涵过渡段的动应力、动位移和振动加速度与列车速度的关系,以及动力响应沿线路纵向变化规律。试验研究结果表明:级配碎石过渡段能减缓路涵间沉降差;动应力、动位移、振动加速度三者均受行车速度影响不大:各测点振动加速度的增值范围没有超过1 m/s2,动位移的变化范围集中在0.1~0.55 mm之间;动应力、动位移、振动加速度三者的最大值点均发生在线路纵向距涵洞顶中心线10.2 m处。这将对正确设计高速铁路路涵过渡段、保证列车平稳、安全行驶提供重要的借鉴作用。  相似文献   

9.
时速250km客运专线路基动力响应研究试验   总被引:1,自引:1,他引:0  
结合合肥—南京客货共线铁路试验段进行路基原位动载试验,通过模拟测试路基在相同机车轴重不同通过车速情况下的弹性变形及振动加速度,对路基在不同行车速度条件下的动力响应作以研究。通过对循环荷载下沿线路横向不同距离路基弹性变形、加速度以及轨下不同深度动应力测试,获得路基弹性变形、加速度以及动应力衰减规律。研究表明,现有规范对弹性变形的建议值不尽合理,提出时速200 km及以上客运专线铁路弹性变形合理建议值,为新建铁路客运专线设计及规范提供依据。  相似文献   

10.
不均匀沉降对无砟轨道路基动力特性的影响   总被引:3,自引:3,他引:0  
为探讨不均匀沉降对高速铁路无砟轨道路基动力特性的影响,建立CRTSⅡ型板式无砟轨道-路基系统的三维动力有限元模型,计算并对比分析有病害和无病害条件下路基的竖向动应力、动位移及振动加速度在空间上的分布规律,结果表明路基不均匀沉降导致无砟轨道路基的动力响应幅值及其空间分布规律发生明显的改变,且主要集中在支承层宽度范围、路基面以下0~1.5m深度内。由不均匀沉降引起路基动应力幅值可达100kPa,为无病害路基的3倍以上,动加速度幅值为无病害路基的2倍以上,在列车循环荷载作用下沉降区域将加速扩大,对路基产生非常不利的影响。  相似文献   

11.
以路基一轨道耦合系统动力学理论为基础,在现有客运专线路基设计条件的基础上,运用ANSYS软件建立客运专线路基动力学有限元模型,对旅客列车运营条件下的路基动态响应进行了计算。结果表明,动应力随路基深度的增加而减小,在基床表层内衰减较快,在基床底层内衰减较慢;动应力沿路基面横向的分布是不均匀的,轨下位置最大,靠近轨枕端部次之,轨枕中间最小,总体上呈马鞍形分布;基床动位移和加速度的分布规律与动应力是相似的。计算结果为客运专线路基的动力设计提供一定的依据。  相似文献   

12.
移动荷载作用下路基上板式轨道动力学特性分析   总被引:1,自引:0,他引:1  
利用ANSYS软件分别建立了轨道板与混凝土底座对缝及错缝布置的板式轨道结构有限元模型,研究了在各种速度的移动荷载作用下两种轨道布置方式的动力学响应以及路基刚度对轨道的影响。研究结果表明:对于两种布置方式,钢轨位移和钢轨支点压力差别较小;CA砂浆动应力和轨道板垂向位移有一定的差别;路基表面动应力和路基面垂向位移差别较大。  相似文献   

13.
地裂缝场地铁路客运专线路堤动力响应分析   总被引:1,自引:1,他引:0  
大西铁路客运专线途径太原盆地、临汾盆地和运城盆地,该3块盆地孕育有若干地裂缝。为了分析列车动荷载作用下,地裂缝场地铁路客运专线运营的安全性和舒适性,利用有限差分方法计算了动车荷载作用下地裂缝场地和无地裂缝场地路堤的动力响应问题。计算结果表明:地裂缝场地路堤的动位移和速度较无地裂缝场地大;地裂缝场地动应力在埋深7~11 m处发生了突变;上、下盘的主要影响范围内分别为6 m和3 m。  相似文献   

14.
通过沪宁线提速路基的现场动态试验,在实测轨道不平顺、车速为120~200 km.h-1情况下,采用动力有限元方法计算铁路路基的动力响应。分析路基动应力的分布形式、路基动应力随列车速度的变化规律、路基动应力随深度的衰减规律,以及道床厚度、路堤高度对路基动应力影响规律。研究表明:路基动应力随列车速度的提高而呈线性增加;路基动应力总体上呈双峰的马鞍型分布,且随着路基深度增加,双峰的幅度减小,直至双峰消失,变为路基中心动应力最大的单峰型;随道床厚度的增加,路基竖向动应力显著减小;路堤高度的增加对路基动应力的影响不大,但可有效减小地基表面的动应力。  相似文献   

15.
为研究运营多年后高速铁路无砟轨道路基振动特性,对沪宁城际高铁路基段进行了现场实车测试。结果表明:板端位置,无砟轨道路基各结构层振动加速度值沿垂向快速衰减,呈指数趋势;板中位置,无砟轨道路基各结构层振动加速度值沿垂向平缓衰减,呈大致线性趋势。路基面和路肩处振动加速度值在板端、板中位置均较为接近;板端特殊位置主要对轨道板和底座板的振动响应有放大效应,且列车速度对板端振动加速度的放大效应最为显著。无砟轨道路基结构中轨道板、底座板振动位移随列车运营速度的变化大致呈线性关系,而路基封闭层和路肩位置振动位移随车速提高变化趋势不明显,与京津、武广、郑西等高铁路基内侧所测动位移分布规律一致。  相似文献   

16.
结合高速铁路路基基床动力响应现场实测与有限元计算,分析了无砟轨道路基动应力、动变形和振动加速度的幅值特征及变化规律,揭示了列车荷载作用下基床内应力、应变的分布规律。研究结果表明:轨道路基基床动应力范围为11~16 k Pa,随车速变化不明显,随轴重增大而增加,每1 t轴重产生动应力约为1.02 k Pa;无砟轨道路基基床表面动应力分布范围较大且相对均匀,动应力随深度衰减较缓慢;无砟轨道路基动变形较小,随着路基刚度的增大动变形减小且分布较均匀,路基对线路整体刚度影响不大;无砟轨道路基振动加速度一般不大于10 m/s2,振动主频100~500 Hz。  相似文献   

17.
借助非线性分析程序ANSYS/LS-DYNA3D,建立重载铁路轨道—路基—地基三维显式动力分析模型,引入三维一致黏弹性人工边界,采用梯形脉冲荷载模拟弹射冲击荷载,分析150~600 kN幅值的弹射冲击荷载作用时重载铁路路基系统的动应力特征。结果表明:路基系统的垂向动应力随时间的变化规律与弹射荷载基本一致;不同幅值弹射荷载作用下路基动应力沿线路横、纵向均呈对称分布,且弹射荷载幅值越大,动应力沿深度的衰减规律越接近指数型衰减;幅值为600 kN的弹射荷载在路基中的影响深度约为道床顶面以下8 m;随着弹射荷载幅值的增大,路基动应力的轮对效应及道床层对钢轨动力的分担作用均越来越显著;路基的动应力峰值与弹射荷载幅值大致呈线性关系;为满足弹射荷载下路基动强度的要求,若路基基床表层、底层和路基本体的填筑材料分别选用A组填料、碎石类填料和细粒土填料,则当弹射荷载幅值为600 kN时,三者的地基系数K30的建议值分别取390,310和135 MPa·m~(-1)。  相似文献   

18.
以动力有限元数值分析为手段,研究和探讨了低路堤CFG桩不同垫层结构形式的动力响应.在相同的CFG桩设计参数条件下,不同垫层刚度对路基面及地基面的动位移幅值、动应力分布扩散规律均有不同程度的影响,综合比较研究后认为,从CFG桩复合地基的动力性能上考察,刚性垫层优于半刚性垫层,半刚性垫层又优于柔性垫层.  相似文献   

19.
应用动态时程分析理论和有限元方法,建立六自由度轻轨半车车辆垂向动力分析模型,研究梁端位移包括梁端转角和错台引起线路垂向不平顺情况下,对轻轨车辆运行舒适度及安全性的影响。研究结果表明,梁端发生正的转角和负的转角只影响车辆垂向动力响应的方向,对幅值影响很小。随着桥梁转角的增大,车体的垂向位移、速度和加速度变化幅度均增大,基本呈线性关系。车辆从桥梁有转角一侧驶入无转角一侧,比从无转角一侧驶入有转角一侧的动力响应强烈,但转角达到4.2‰时,车体最大垂向加速度为0.094 g,可认为对车辆乘坐舒适性无影响,在实际发生的更小转角情况下,可忽略其对车辆运行平稳性的影响。随着错台高度的增加,车体垂向位移、速度和加速度值变大,但量值较小,对行车舒适性无影响。  相似文献   

20.
基于计算流体力学及弹性体在多体系统中的耦合理论,将计算流体力学、多体系统动力学及有限元结合起来,构建横风环境中列车-桥梁系统耦合振动的仿真平台,并以平潭海峡大小练岛水道斜拉桥为研究对象开展研究。列车-桥梁系统的气动模型构建采用局部动态层网格方法,计算列车-桥梁系统在不同风速和车速下的气动荷载。基于有限元方法和多体系统动力学方法建立列车-桥梁系统多体动力学模型,以时间激励方式施加气动荷载,仿真计算双线会车时不同风速和车速工况下列车-桥梁耦合系统的动力响应。研究结果表明:(1)随着风速的增大,桥梁主跨跨中竖向位移变化很小,而跨中横向位移显著增大,跨中竖向和横向振动加速度亦明显增大。风速和车速分别在30 m/s与300 km/h以内时,桥梁的挠度和振动加速度均能满足要求。(2)横风环境下列车在桥梁上运行时,头车的动力特性最为不利。随着风速和车速的增大,车辆的动力学指标均呈增大趋势。(3)列车行至桥梁跨中时轮重减载率出现最大值,两车交会时车体横向加速度发生突变且出现最大值,部分动力学指标不满足要求。(4)双线会车时,风速在10、20、30 m/s时的临界安全车速分别为296、256、147 km/h,临界舒适车速分别为166、150、106 km/h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号