首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 390 毫秒
1.
基于摩擦自激理论的单侧钢轨波磨机理分析   总被引:1,自引:1,他引:0       下载免费PDF全文
肖宏  陈鑫  赵越 《西南交通大学学报》2022,57(1):83-89, 119
为了分析重载铁路曲线地段钢轨波磨的产生原因,基于摩擦自激振动理论建立小半径曲线轮轨三维接触精细化模型,讨论了不同扣件刚度、摩擦系数、超高对轮轨系统不稳定摩擦自激振动的影响,揭示了单侧钢轨波磨产生的内在原因,并通过轮轨瞬态动力学方法,分析了单侧钢轨波磨的传递及演化过程. 结果表明:超高和实际运行速度的不匹配是曲线内股钢轨首先产生波磨的主要原因;内股钢轨波磨产生后会导致轮轨系统不稳定,并将振动传递至外股钢轨,从而诱发小半径曲线地段两侧钢轨均产生波磨;适当地提高扣件垂横向刚度、控制轮轨摩擦系数在0.4以下,能够有效地降低轮轨系统发生不稳定振动的趋势,从而抑制波磨发展.    相似文献   

2.
陈光雄 《西南交通大学学报》2022,57(5):1017-1023, 1054
钢轨波磨会降低乘坐舒适性,增大轨道结构伤损,甚至影响列车的安全运行. 为判断钢轨波磨预测模型的准确性,首先,基于钢轨波磨现场调研数据,统计地铁线路和干线铁路的钢轨波磨发生率;其次,针对现有钢轨波磨预测模型验证方法的局限性,同时结合钢轨波磨发生的规律性,提出预测模型验证的3种基本工况:线路曲线半径≤350 m时的内轨波磨和外轨波磨、曲线半径 ≥ 650 m时的非科隆蛋扣件曲线线路或者直线线路钢轨的波磨,并进行实例验证;最后,根据基于轮轨蠕滑力饱和情况,提出了一种快速预测钢轨波磨发生的新方法. 研究结果表明:现有的波磨预测模型验证工况缺乏一般性,大部分没有考虑线路曲线半径的影响,忽视了从新轨到波磨出现阶段的钢轨振动演变规律,造成通过验证的波磨预测模型预测准确率偏低;所提出的波磨快速预测方法准确率可达到85.00%.   相似文献   

3.
地铁先锋扣件地段钢轨波磨成因   总被引:1,自引:0,他引:1  
为了研究先锋扣件地段钢轨波磨的成因并给出应对措施,基于摩擦自激振动引起钢轨波磨的理论,建立了包括导向轮对、轨道系统的自激振动有限元模型,使用复特征值法研究了轮对-轨道系统的动态稳定性;通过参数敏感性分析寻找影响钢轨波磨的主导因素,提出抑制乃至消除钢轨波磨的措施. 研究结果表明:轮轨间饱和的蠕滑力引起的轮对-轨道系统频率为319 Hz的自激振动是导致内侧钢轨严重的波磨的主要原因,模型预测的波磨波长为51.4 mm,与实测数据非常接近;参数敏感性分析表明,先锋扣件中的橡胶支承块的弹性模量和阻尼系数越大,钢轨波磨发生的可能性越低;采用弹性模量和阻尼系数有利于抑制乃至消除钢轨波磨,将阻尼系数提高到0.000 1可显著抑制钢轨波磨.   相似文献   

4.
钢轨波浪形磨损的研究分析   总被引:8,自引:0,他引:8  
钢轨波磨是世界各国铁路部门致力解决的极复杂的问题,通过对近几年相关资料的总结,分析了钢轨波磨领域的研究现状。介绍了当前在波磨分类、成因机理和减缓措施中存在的各种观点,重点讨论了波磨的形成机理和减缓措施,认为波磨的形成和发展有自激振动、反馈振动、接触疲劳3个方面的原因。  相似文献   

5.
为了解轨道车辆运营中普遍存在的钢轨波磨问题,分析了钢轨波磨的形成机理,阐述了钢轨波磨对车辆-轨道系统动力学性能的影响,综述了常见的钢轨波磨检测、监测与抑制方法,并展望了钢轨波磨的研究方向。研究结果表明:车辆-轨道系统耦合振动、轮轨反馈振动、轮轨自激振动和轮轨接触振动是形成钢轨波磨的主因,车辆-轨道结构、线路运营条件、轮轨材料、钢轨型面和车轮踏面轮廓等多方面因素相互耦合作用亦会引起钢轨波磨;重载、高速铁路和地铁钢轨波磨会影响车辆-轨道系统动力学性能和车辆与轨道零部件寿命,也会影响扣件、钢轨、轨枕、轨道板(道砟)和轴箱等零部件的振动特性,各零部件的阻尼、刚度等物理参数与运行条件不匹配时也会造成钢轨波磨,列车长时间运行在钢轨波磨路段时会导致车辆-轨道结构产生强烈共振,造成严重疲劳损伤,影响行车安全;检测与监测是研究和发现钢轨波磨的重要辅助手段,抑制钢轨波磨主要通过改善轮轨接触关系、钢轨打磨、提高钢轨表面材料硬度、添加相关摩擦调节剂和轮轨润滑剂、使用钢轨吸振器技术、优化轮轨系统结构以及调整列车运营规定等措施来实现;目前,钢轨打磨仍是消除和减轻钢轨波磨最直接、最有效和最经济的措施,应提升并改善钢轨打磨技术。   相似文献   

6.
钢轨波磨的准确测量及评价是研究钢轨波磨问题的基础.根据国际标准BS EN 15610:2009要求,采用精密仪器CAT钢轨波磨测量分析小车,对北京某地铁线钢轨波磨的发展过程进行了跟踪测量,并分析了波磨的典型特征、波长谱特性及发展规律.结果表明:钢轨波磨与轨道结构型式密切相关;钢轨波磨典型波长的波磨发展并不会持续增加,而是会扩展为长波波磨及短波疲劳裂纹.跟踪监测表明,制定出合理的打磨计划和验收标准对经济、高效缓解波磨的发展具有重要意义.  相似文献   

7.
采用钢轨波磨测量仪测量了钢轨波磨特征,采用加速度和位移传感器测量了钢轨打磨前后车辆和轨道零部件的振动加速度,分析了钢轨波磨对车辆和轨道零部件振动的影响,建立了车辆-轨道耦合动力学模型,研究了钢轨波磨对轮轨相互作用力的影响,确定了钢轨打磨限值。研究结果表明:钢轨波磨主波长为30~40mm,次波长为16mm;钢轨轨头和弹条在650~800Hz的振动和轴箱在670~800Hz的振动与30~40mm波长对应的车辆通过振动行为一致,因此,短波钢轨波磨导致地铁车辆和轨道零部件振动过大,是车辆一系钢弹簧和轨道扣件弹条疲劳断裂的主要原因;钢轨打磨可以有效解决疲劳断裂问题,打磨前钢轨轨头、弹条、轨枕和道床振动加速度均方根分别为243.4、309.3、17.1、2.6m·s-2,打磨后振动加速度均方根下降为51.5、8.8、1.5、0.5m·s-2;轮轨垂向力和横向力均对钢轨波磨波长非常敏感,当钢轨波磨波深为0.1mm时,35、80mm波长对应的轮轨垂向力分别为307、109kN,横向力分别为56、25kN;当车辆运营速度为90~120km·h-1时,根据轮重减载率限值标准,35mm波长钢轨波磨波深为0.05~0.08mm,根据轮轨垂向力限值标准,35mm波长钢轨波磨波深为0.03~0.06mm,建议30~40mm短波钢轨波磨波深达到0.05mm时进行打磨处理。  相似文献   

8.
为探明城市轨道交通高架钢轨波磨地段振动噪声对沿线环境的影响,以某城市轨道交通高架钢轨波磨地段为研究对象,开展了列车以不同速度通过时的振动与噪声现场测试;基于测试结果分析了车速对城市轨道交通高架振动与噪声的影响,研究了城市轨道交通高架噪声的空间分布特性,解释了城市轨道交通高架钢轨波磨地段振动与噪声峰值产生的原因。研究结果表明:当列车分别以20、40、60、80、100和110 km·h-1的速度通过城市轨道交通高架钢轨波磨地段时,距线路中心线7.5 m、高于轨面1.2 m处的声压时程峰值分别约为0.6、0.9、1.3、1.9、2.3和3.3 Pa;轨面以上区域主要受轮轨噪声的影响,而梁体下方区域则主要受桥梁结构噪声的影响;轮轨噪声与车速之间存在着很强的线性相关性,而桥梁结构噪声与车速之间的线性相关性则略低,车速每增大10 km·h-1,轮轨噪声和桥梁结构噪声分别约增大1.7和1.1 dB;不同车速下城市轨道交通高架噪声随距离的衰减规律基本一致,测点与线路中心线的距离每增大1倍,测得的噪声约减小4.33 dB;钢轨波磨对城市轨道交通高架轮轨噪声的影响较为显著,钢轨波磨的波长决定了列车以不同速度过桥时钢轨振动加速度的峰值频率,进而影响轮轨噪声的峰值频率;城市轨道交通高架结构噪声的峰值频率主要与其自身的振动特性有关,与车速和钢轨波磨的关系并不大。   相似文献   

9.
根据非线性振动理论和赫兹理论,分析了钢轨波磨与轮轨纵向自激振动幅值和接触椭圆纵向轴长的关系。分析表明,钢轨波磨产生的机理是轮对自激振动幅值大于接触椭圆纵向轴长;对于实际的轮轨系统,波磨产生的条件是轮对横移量大于临界值。据此,对波磨形成的过程进行了仿真计算并设计了再现试验。计算结果表明,在轮对横移量为8mm时,接触表面产生短波长(16—20mm)波磨。再现试验用机车轮对在滚动振动试验台上进行。当横移量为8和11mm时,均产生波磨。前者波长均匀,约20mm;后者波长不均匀,在18—27mm之间。横移量为6mm时无明显波磨。仿真计算和试验均支持关于波磨产生的机理和条件的结论。  相似文献   

10.
钢轨波磨是地铁轨道中最显著的损伤问题之一,迄今未能得到有效解决,其中钢轨吸振器对钢轨波磨具有良好的抑制作用,但其抑制机理尚不明确。根据重庆地铁1号线双碑—石井坡区间的现场调研结果,建立了短轨枕支撑小半径曲线的车辆-轨道系统动力学模型,分析了地铁车辆通过小半径曲线区段的动力学特性;结合现场测试和动力学分析结果,基于轮轨系统摩擦自激振动诱导钢轨波磨的观点,建立了轮对-钢轨-吸振器系统的有限元模型;采用复特征值法和瞬时动态法从频域和时域角度分析了钢轨吸振器对钢轨波磨的抑制机理,对比了轨底吸振器和轨腰吸振器的抑制作用,分析了钢轨吸振器关键参数对钢轨波磨的影响规律。研究结果显示:钢轨吸振器能有效抑制轮轨系统的摩擦自激振动,进而抑制钢轨波磨的产生与发展,轨底吸振器与轨腰吸振器对钢轨波磨的抑制效果相近;同时在一定范围内增加了钢轨吸振器的质量比和连接刚度能降低轮对-钢轨-吸振器系统发生摩擦自激振动的可能性。  相似文献   

11.
为了探究高速铁路制动区间的典型钢轨波磨现象,基于轮轨摩擦自激振动诱导钢轨波磨的观点展开了研究,通过武广高速铁路制动区段的现场调研,掌握该区段的波磨特征并采集相应的轨道不平顺;基于轮轨摩擦自激振动诱导钢轨波磨的观点分别建立制动区段高速列车的动/拖车轮对-轨道-制动系统的有限元模型,并利用复特征值法进行动/拖车轮轨系统的摩擦自激振动分析,比较动/拖车轮轨系统在制动和非制动工况下系统发生摩擦自激振动的可能性,以及在制动工况下动车轮轨和拖车轮轨系统的摩擦自激振动情况;使用控制变量法研究了制动系统摩擦系数和扣件垂向刚度对动/拖车轮轨系统摩擦自激振动的影响规律.研究结果表明:制动工况更容易引起系统的摩擦自激振动;拖车轮轨系统更容易引起系统摩擦自激振动;控制制动装置摩擦系数约为0.30,扣件垂向刚度约为50 MN/m时能一定程度降低轮轨系统发生摩擦自激振动的可能性,进而抑制钢轨波磨的产生.  相似文献   

12.
对世界各国地铁钢轨波磨的基本特征进行了系统梳理,总结了其普遍性与时间集中性,及其与曲线、轨道结构、车辆及其他因素相关性等典型特征,并对其分类方法、形成机理和治理措施进行了综合评述。研究结果表明:钢轨波磨普遍存在于地铁与有轨电车线路中,在新线开通初期与线路改造初期最为严重;一般而言,相对于直线和大半径曲线,小半径曲线的钢轨波磨最为普遍,低轨侧波磨波长短,幅值大,但也有例外,部分大半径曲线及直线上也有分布;波磨的波长特征和发展速度与轨道结构密切相关,轨道结构及部件不匹配时,易出现快速发展的波磨;车轮踏面廓形、轮对定位、悬挂刚度与簧下质量等车辆结构参数会对波磨萌生、发展与表现特征产生影响;波磨的产生还可能与钢轨材质、牵引和制动、运行环境、湿度及摩擦因数有关。地铁钢轨波磨的形成机理主要基于轮轨系统共振、轮轨黏滑(摩擦自激)振动、钢轨振动波反射等理论,对波磨形成过程的纵向动力学影响与系统非线性因素考虑不完善,关于黏滑自激振动与轮轨负摩擦特性对波磨影响的认识还不统一,难以解释直线以及曲线高低轨波磨特征的差异等,对波磨的形成和发展缺乏理论上的主动预测和试验验证;各国主要以钢轨打磨来控制波磨发展,通过调节轨道结构、运行环境,采用钢轨吸振器和轮轨摩擦调节装置,以及优化车辆设计等主动措施来控制波磨的研究仍需进一步开展;未来应针对车辆-轨道系统的动态特性以及实际运行工况下的轮轨微观接触行为和黏滑自激振动特性,开展车辆-轨道系统的轮轨动态磨耗演化仿真,掌握地铁钢轨波磨形成机理和关键因素影响规律,提出控制地铁钢轨波磨的主动措施和轮轨匹配优化设计原则。   相似文献   

13.
钢轨磨耗型波磨计算模型与数值方法   总被引:4,自引:3,他引:1  
分析了国内外铁路钢轨波浪形磨损理论模型,提出了车辆轨道垂、横向耦合动力学、轮轨滚动接触力学和钢轨材料摩擦磨损模型为一体的钢轨磨耗型波浪形磨损计算模型,发展了相应的数值方法。模型中车辆结构和轨道下部结构被简化成等效的质量、弹簧和阻尼系统,钢轨用Euler梁代替,并考虑它的垂向、横向弯曲变形和扭转变形,利用修改的Kalker三维弹性体非Hertz滚动接触理论和相应的数值方法计算轮轨蠕滑力和摩擦功,假设材料单位面积磨损量正比于轮轨接触面摩擦功密度。利用该模型和相应的数值方法分析了几个磨耗型波磨情况,结果表明该模型可以模拟轨道多种缺陷(轨缝、扁疤、凹坑、轨枕间距、随机不平顺等因素)引发的钢轨磨耗型初始波磨和发展规律,可以模拟由于钢轨在机械加工或打磨过程中形成的初始波磨的演化过程,可以通过改善轨道特性来消除或减少波磨的发生和发展。  相似文献   

14.
总结了现有传统钢轮钢轨式轮轨系统的工程问题、研究现状和工程处理方法;分析了钢轨波磨和车轮不圆的形成和发展机理,对困扰高铁的踏面凹磨问题提出了创新性治理设想;拟通过轮轨系统的廓形设计-磨损评价-磨损治理的系统化革新思路,获得既安全又经济的线路条件个性最优化方案;总结和展望了目前轮轨系统的打磨和镟轮,讨论了轮轨系统的检测方...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号