首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为解决半潜船吊舱推进电机控制系统中负载扰动造成的转速跟踪性能差的问题, 提出一种基于数据驱动的吊舱推进电机转速矢量控制方法; 对包含未知负载扰动的推进电机转速方程进行离散化处理, 给出关于输出转速与输入电流离散后的非线性转速系统; 由于非线性转速系统方程中变量较多且负载扰动模型未知, 设计了基于数据驱动的无模型自适应控制器, 并给出了伪偏导数估计算法; 采用滑模观测器观测螺旋桨负载扰动, 同时给出了滑模控制器; 结合无模型自适应控制和滑模控制给出了负载扰动下的无模型自适应滑模(MFASM)控制方案; 构建了吊舱推进电机无模型自适应滑模矢量控制调速系统, 并在MATLAB/Simulink环境下给出了仿真结果。研究结果表明: 在船舶正常作业恒定转速下, 在0.3~0.5 s时间区域内, 采用MFASM矢量控制方案和PI矢量控制方案的吊舱推进电机的转速误差分别为2、6 r·min-1; 在0.8~1.0 s时间区域内, 采用无模型自适应滑模矢量控制方案和PI矢量控制方案的吊舱推进电机的转速误差分别1、3 r·min-1; 对于船舶操车作业的可变转速情形, 采用MFASM矢量控制方案的推进电机转速和转矩达到稳态的时间比PI矢量控制方案少0.01~0.03 s。可以看出, 采用MFASM矢量控制方案可改善吊舱推进电机转速跟踪性能, 是一种有效的抑制负载扰动的数据驱动控制方法。   相似文献   

2.
针对欠驱动船舶轨迹跟踪控制问题,考虑系统存在未知参数和外界扰动,提出了一种带强化学习的神经网络自适应迭代滑模控制方法;利用轨迹跟踪的横向和纵向误差信息构造非线性迭代滑模面,分别设计了船舶柴油机转速和舵角的神经网络迭代滑模控制器;根据船舶柴油机转速和舵角的实时测量值,计算了反映控制量抖振状态的强化学习信号,在线优化了神经网络的结构和参数,以抑制控制量的抖振,进一步增强控制系统的自适应性;建立了5446TEU集装箱船舶数学模型,分别对圆轨迹和正弦轨迹进行了跟踪控制。仿真结果表明:在风浪扰动下圆轨迹跟踪时,与迭代滑模控制策略相比,采用提出的控制策略250s左右能跟踪上目标轨迹,速度提高约1倍,最大跟踪偏航距离为250m,误差减小约30%,控制舵角在400s后基本平稳,波动幅值约为2°,舵角和柴油机转速的抖振变化幅值均减小了50%以上,柴油机转速控制参数和舵角控制参数分别在38~45和3.3~3.9之间实现了自适应调节;在正弦轨迹跟踪时,与模糊迭代滑模控制策略相比,采用提出的控制策略纵向跟踪平均误差小于20m,减小了50%以上,舵角抖振量平均幅值小于10°,减小了60%以上,柴油机转速控制参数和舵角控制参数分别在5.7~5.8和0.8~2.5之间实现了自适应调节。  相似文献   

3.
基于空气动力学理论分别推导了作用在接触线上的空气阻尼和脉动风气动载荷, 并将空气动力项添加至接触线波动速度公式中进行修正; 通过风洞试验和CFD绕流仿真得到了横风环境下的气动阻力系数, 分析了不同空气阻尼下接触线波动速度的变化规律; 基于AR模型和接触网的结构特性, 建立了具有时间和空间相关性的接触网脉动风场, 通过仿真计算分析了脉动风速和风攻角对接触线波动速度的影响。研究结果表明: 静风载荷引起的接触线空气阻尼很小, 当平均风速达到30 m·s-1时, 接触线空气阻尼仅为0.3, 接触线波动速度为549.1 km·h-1左右, 因此, 空气阻尼不会对接触线波动速度产生较大影响; 当来流风攻角为60°, 平均风速不大于10 m·s-1时, 脉动风下接触线波动速度标准差和最值差分别小于1和6 km·h-1, 此时接触线波动速度相对无风情况变化较小, 脉动风载荷对接触线波动速度的影响不明显; 当风速达到40 m·s-1时, 接触线平均波动速度较无风情况下降39.39 km·h-1, 且其标准差和最值差分别达到11.84和75.98 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至474.16 km·h-1, 因此, 脉动风下风速越大, 接触线波动速度受脉动风载荷影响越显著; 当风速保持30 m·s-1, 来流风攻角为0°~30°时, 接触线波动速度标准差和最值差分别小于1和5 km·h-1, 此时脉动风载荷对接触线波动速度的影响较小; 当风攻角为90°时, 接触线波动速度标准差和最值差分别达到12.38和73.19 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至472.91 km·h-1, 因此, 脉动风下来流风越偏于水平方向, 对接触线波动速度的影响越小。   相似文献   

4.
侧风下高速列车车体与轮对的运行姿态   总被引:3,自引:0,他引:3  
应用流体动力学理论,建立了高速列车空气动力学模型,计算了作用于高速列车车体上的气动力和气动力矩;应用多体动力学理论,建立了车辆系统动力学模型,分析了在不同风向角、侧偏角与合成风速下高速列车头车车体和轮对的运行姿态。计算结果表明:在不同侧风环境下,头车车体始终向背风侧横摆和侧滚;当风向角为90°时,车体的横向位移和侧滚角最大;当列车车速为350 km.h-1,侧风风速分别为13.8、32.6 m.s-1时,列车头车车体最大横向位移分别为74.2、171.7 mm,最大侧滚角分别为3.1°和8.4°;当列车车速为200 km.h-1,风速不小于32.6 m.s-1,且风向角为90°时,列车头车一、二位轮对均向背风侧横移,背风侧车轮易发生爬轨现象,三、四位轮对均向迎风侧横移,三位轮对迎风侧车轮易发生爬轨现象;四位轮对的横移量和摇头角均小于前三位轮对,相对安全。  相似文献   

5.
为了保障高速列车的安全可靠运行,文章以存在未知扰动和输入时滞的高速列车制动系统为被控对象,设计了新的高速列车制动系统模型参考自适应控制策略,实现了对给定速度曲线的渐近跟踪。首先,通过分析高速列车制动系统的原理和动态特性,建立了存在扰动和时滞的高速列车制动系统状态空间模型;其次,充分利用模型参考自适应控制善于处理系统不确定性和外界扰动的能力,结合状态预测,设计了状态反馈控制器,使其在存在未知扰动和输入时滞时仍能实现对给定速度曲线的渐近跟踪;最后基于CRH380AL型高速列车在济南—青岛段的数据开展仿真验证,仿真结果表明文章设计的高速列车制动控制系统具有理想的稳定和渐近跟踪特性,能克服未知参数和有界扰动的影响,具有良好的鲁棒性。  相似文献   

6.
为了提高高速离心压缩机驱动电机调速系统的抗扰性能,提出自适应非奇异终端滑模控制的无模型控制方法。设计自适应非奇异终端滑模控制律,引入速度误差变量,采用非奇异终端滑模面,使系统状态变量根据距离平衡点自适应调节,建立无模型超局部模型,设计速度控制器。以额定功率60 kW、额定转速45 000 r·min-1的高速离心压缩机系统为对象,对方案的控制效果进行了验证。仿真结果表明:在电机参数发生摄动、负载产生扰动时,该方法可以有效提高系统抗干扰性,减小电机转速波动。  相似文献   

7.
分析了交叉回线区域空间磁场分布, 利用磁通密度纵向分布周期性特征, 将车辆位移、速度用感应电压包络信号相位角与角速度来表征; 建立了采用简单交叉回线的车辆测速定位状态空间方程组, 将车辆运行位置和速度作为状态变量在测试过程中连续输出; 考虑实际运行工况下的复杂电磁环境, 引入了噪声自适应算法, 提出了基于新息自适应的磁浮车辆实时连续测速定位计算方法; 在实验室条件下建立了交叉感应回线标定系统, 验证了方法的基本原理; 为了验证方法的有效性和准确性, 进了数值仿真算例分析, 考虑正常噪声和突变噪声工况, 并对比了包含和不包含自适应噪声处理过程的计算结果。试验结果表明: 不同间隔距离条件下, 感应电压包络线都接近于正弦波, 1次谐波是包络信号的主要成分, 相同阶次的谐波幅值与间隔距离成近似线性关系, 与理论分析结果一致; 在正常噪声区段, 速度误差不超过0.03 m·s-1, 定位误差约为3 mm, 在突变噪声区段, 速度误差均值为0.027 m·s-1, 最大值为0.130 m·s-1, 定位误差均值为4.82 mm, 最大值为23.39 mm, 说明测速定位方法可以满足实际应用需求; 数值仿真中突变噪声区段的低信噪比信号在实际应用中是极端情况, 对比正常噪声区段和突变噪声区段的计算结果可知改善输入信号的信噪比可以明显提高测试精度。   相似文献   

8.
为了解决具有非线性和环境干扰的船舶动力定位系统的控制问题, 提出了一种基于线性矩阵不等式的滑模控制算法; 将跟踪误差设计为滑模函数, 设计线性矩阵不等式, 求解状态反馈增益; 基于二次型Lyapunov函数证明了闭环系统的稳定性; 设计切换函数, 使系统对不确定性和外加干扰具有较强的鲁棒性, 避免出现抖振现象; 对基于线性矩阵不等式的滑模控制器进行仿真, 计算出动力定位船舶在无扰动的匀速运动和有外界环境扰动的变速运动2种不同情况下的前进速度、横荡速度、艏向角速度、前进加速度、横荡加速度、艏向角加速度、前进控制力、横荡控制力和艏向控制力矩等; 分析了状态反馈增益线性矩阵、边界层、切换项增益等参数对控制性能的影响。研究结果表明: 采用基本滑模控制使前进速度达到期望值所需的上升时间为29s, 而新算法为15s, 节约了48.28%;采用基本滑模控制使横荡速度达到期望值所需的上升时间为24s, 而新算法为14s, 节约了41.67%;采用基本滑模控制使艏向角速度达到期望值所需的上升时间为13s, 而新算法为10s, 节约了23.08%。可见, 设计的控制器对有非线性和环境干扰的船舶动力定位系统都具有较强的鲁棒性, 具有控制输入连续、控制抖振小、不存在过高增益等特点。   相似文献   

9.
为研究基于主动吹气的流动抑振措施对流线型箱梁涡振性能的影响,进行了1∶50刚性节段模型自由悬挂风洞试验,节段模型与吹气装置连接以达到流动控制效果,分析了主梁处于最不利5°攻角时不同气孔参数下的涡振响应,并通过数值模拟重现了主梁竖弯涡振,分析了主动吹气对抑制主梁涡振的作用机理。研究结果表明:5°攻角原设计断面出现明显竖弯及扭转涡振现象,其中竖弯及扭转涡振分别有2个锁定区间,在竖弯第2锁定区间及扭转第1锁定区间出现涡振响应峰值;主动吹气的流动控制对主梁涡振响应幅值及涡振区间均有较大影响;主梁竖弯涡振在下腹板上下游或者下游吹气速率10 m·s-1时消失,最佳抑制效果达91.9%;吹气速率5 m·s-1对于扭转涡振有明显抑制作用,扭转涡振最佳抑制效果达65.4%;吹气速率对于涡振性能影响明显,吹气速率10 m·s-1的竖弯抑制效果优于吹气速率5 m·s-1,而吹气速率5 m·s-1的扭转抑制效果优于吹气速率10 m·s-1;气孔间距2.5 m工况总体涡振控制效果优于气孔间距5.0 m工况;气孔布置在下腹板的工况抑制效果优于气孔布置在上腹板的工况;当气孔布置于下游下腹板处,吹气速率达10 m·s-1,气孔间距为2.5 m时,主动吹气降低了主梁下游上下表面周期性脉动压差,破坏了下游下腹板处的负压中心,故其能有效抑制主梁竖弯涡振。   相似文献   

10.
基于车辆纵横向动力学耦合模型,研究了自动化公路系统车辆换道纵横向耦合控制.假定换道过程中车辆横向加速度满足梯形约束,根据期望换道轨迹计算车辆换道时的期望横摆角和横摆角速度,依靠车载传感器获得车辆横摆角速度信息.采用有限时间滑模趋近律,设计了车辆换道纵横向耦合变结构控制规律.基于李雅普诺夫稳定性理论,对控制系统的稳定性进行了分析,得到了系统渐进稳定的充分条件.仿真结果表明:采用该控制规律,车辆在纵向速度变化的情况下能够良好地跟踪期望换道轨迹,跟踪误差小于0.06 m.  相似文献   

11.
针对含输入时延与通信时延的车辆队列PID控制系统,分析了其内部稳定性和队列稳定性,研究了内部稳定的充要条件,求解了完整、精确的时延边界;在内部稳定性分析中,考虑输入时延与通信时延影响下车辆队列PID控制系统为中立型双时延系统的特点,结合Rekasius代换和劳斯表,提出了关于中立算子的系统强稳定充要条件;在此基础上,为了便于PID参数的快速选取,推导了一种形式更为简练的系统强稳定充分条件;在强稳定条件下,基于特征根聚类法求解了系统完整、精确的时延边界;针对具有奇数辆跟随车的车辆队列,推导了无关车辆队列规模的输入时延上界;在队列稳定性分析中,为了保证干扰和误差沿车辆队列向后传播不发散,分析了车间误差传递函数,给出了双时延影响下队列稳定的充分条件。仿真结果表明:在含输入时延与通信时延的分布式PID控制器作用下,车辆队列控制系统可同时保证内部稳定和队列稳定;车间状态误差可在15 s内快速减小并趋近于零;在所有车辆恒速行驶时,车间保持50 m期望安全距离;在领航车以0.5 m·s-2加速和0.8 m·s-2减速时,跟随车的速度和加速度随领航车变化,并在领航车速度稳定时一致;车辆队列在不同行驶工况下,由领航车加、减速引起的车间位置误差小于0.2 m,且沿车辆队列向后传播不发散。   相似文献   

12.
为了兼顾车辆自适应巡航控制(ACC)系统的跟踪控制效果和实时性, 提出了基于显式模型预测控制(EMPC)理论的车辆多目标自适应巡航控制方法; 基于车辆间运动学关系建立自适应巡航控制运动学模型, 根据预测控制理论推导预测时域内的跟踪误差预测模型, 并确定车辆安全性、跟踪性、经济性和舒适性等多性能目标函数和约束条件; 运用显式模型预测控制中的多参数规划理论, 将基于反复在线优化计算的闭环模型预测控制系统转化为与之等价的显式多面体分段仿射(PPWA)系统, 通过离线计算获得期望加速度与距离误差、速度误差、自车加速度和前车加速度等状态变量之间的最优控制律, 并设计在线查表的搜索流程, 通过定位当前状态所处分区, 并应用该分区的显式控制律实现自适应巡航控制; 进行了纵向跟踪工况仿真验证, 并与传统MPC-ACC控制方法进行对比。对比结果表明: 在前车正弦加减速工况下, EMPC-ACC控制器单步运算速度比MPC-ACC控制器平均提升了53.51%, EMPC-ACC控制下的平均距离跟踪误差为0.220 3 m, 平均速度误差为0.340 1 m·s-1; 在前车阶跃加减速工况下, EMPC-ACC控制器单步运算速度比MPC-ACC控制器平均提升了72.96%, EMPC-ACC控制下的平均距离跟踪误差为0.331 9 m, 平均速度误差为0.399 1 m·s-1。可见, 提出的EMPC-ACC控制算法在保证纵向跟踪性能的前提下, 有效地提高了自适应巡航控制的实时性。   相似文献   

13.
强度衰减是滑坡高速远程运动的重要原因,为了探明滑体强度衰减对滑坡运动能力的影响,以意大利Vajont高速滑坡为例,结合现场调查以及滑坡历史资料,基于岩土体剪切强度衰减理论,利用非连续变形分析(DDA)方法,探讨滑带强度衰减、滑体强度衰减及其共同作用对Vajont滑坡独特运动堆积特征的影响. 研究结果表明:滑带和滑体强度衰减的共同作用造成了Vajont滑坡显著高速运动和独特堆积特征,滑带强度衰减对滑坡运动速度起主导作用,当滑带强度衰减为15.8° 时,监测块体最大速度为5 m/s,当滑带强度衰减为6.9° 时,监测块体的最大速度为19 m/s;滑体强度衰减则对其高速持时具有显著影响,进而大幅提高滑坡运动的远程能力,当滑体强度为40.0° 时,监测块体水平最大位移为140 m,当滑体强度衰减为14.0° 时,监测块体水平最大位移为260 m;数值模拟过程中滑坡呈现出“一体化”运动特征,此特征可用来解释在实际滑坡堆积体高速远程运动过程中保持良好层序的原因.   相似文献   

14.
以修正Karman风速谱为目标谱, 基于最小信息准则确定线性滤波法自回归模型的阶数, 采用线性滤波法和谐波叠加法模拟了高速列车随车移动点的脉动风速时间历程, 并验证了模拟结果的可靠性, 对比了2种方法模拟脉动风速均值、方差、幅频、相频等特征变量以及风速分布规律的差异, 并分析了2种方法的计算效率。分析结果表明: 采用2种方法得到的脉动风速功率谱密度均围绕目标谱波动; 脉动风速均值约为0, 由于随机数的使用, 使得脉动风速峰值在个别时间点存在差异, 且在低频区域得到的仿真谱差异可能超过50%;不同风向角下计算所得脉动风速均值的差异小于2%, 且脉动风速的分布规律几乎一致; 当列车运行速度为80m·s-1, 且距地面高度10m处平均风速为25m·s-1时, 2种方法得到的脉动风速峰值均值间的差异小于1%, 表明2种方法均适用于模拟高速列车随车移动点的脉动风速; 2种方法所得脉动风速幅值均随脉动风速频率的增大而减小, 相位在-π~π内波动, 脉动风速分布在-3~3m·s-1内的差异仅为0.48%;采用2种方法所得脉动风速点数满足高斯分布, 且高斯分布拟合系数最大差异为3.15%;采用线性滤波法模拟所得脉动风速波动比谐波叠加法大7.89%, 其稳定性劣于谐波叠加法; 采用线性滤波法的计算时间约为谐波叠加法的1/9, 其计算效率远高于谐波叠加法。   相似文献   

15.
为验证滑模控制用于含随机干扰的车辆跟随系统的可行性,建立了车辆跟随系统模型和相应的随机车辆动力学模型.用滑模控制法设计了随机车辆跟随系统的控制器.用向量Lyapunov函数法研究了控制系统稳定性,并得到系统指数均方稳定的充分条件.仿真中设置的随机因素为车辆的阻力.仿真结果表明,在5 s内跟随车辆的加速度和速度已接近领头车辆,车间距误差小于0.05 m.   相似文献   

16.
为改善传统稳定域在评价铰接列车非稳态转向稳定性方面的不足, 提出了一种适用于半挂汽车列车的高速变道稳定域的估计方法; 建立了包含Pacejka魔术公式的半挂汽车列车四自由度非线性动力学模型, 通过半挂汽车列车高速变道的仿真和实车试验对比验证了所建模型的有效性; 在构建车辆系统Jacobian矩阵的基础上, 应用特征根法分析了车辆在高速阶跃转向和正弦转向2种情况下的稳定性; 基于Lyapunov稳定性定理, 通过构建Lyapunov能量函数, 分析了车辆极限状态时的系统能量与能量变化阈值, 获得了车辆高速变道稳定域, 并利用半挂汽车列车30m·s-1变道试验验证稳定域。分析结果表明: 高速变道过程中车辆系统Jacobian矩阵特征根大于0, 但最终收敛至小于0, 系统仍可保持稳定; 车辆高速变道稳定域为近似凹形曲面, 能量越接近中心区的低点, 车辆系统越稳定, 而一旦接近甚至超过能量阈值, 车辆系统将临近或发生失稳; 在半挂汽车列车30m·s-1变道试验中, 当Lyapunov能量接近阈值3.863 6J时, 车辆系统处于临近失稳状态。可见, 确定的半挂汽车列车高速变道稳定域, 能够较好地表征车辆系统在高速瞬态连续转向状态下的稳定性, 可为半挂汽车列车操纵稳定性评价和控制提供有益参考。   相似文献   

17.
因车体坐标系统和手机坐标系统存在角度偏差,为使手机检测数据真实反映车体振动加速度,提出针对手机姿态误差的系统性矫正方法. 该方法以重力方向为基准矫正手机垂向加速度,借助车体横、纵向加速度的正交性矫正手机水平向加速度,并基于极大似然估计原理评估角度偏差,保证手机姿态矫正的可靠性. 结合现场测试结果表明:两部智能手机检测数据经姿态误差矫正得到以重力方向为基准的垂向角度修正值分别为0.008° 和0.007°,两者水平夹角为29.75°,与试验放置夹角30.00° 偏差0.25°;智能手机与高精度传感器检测的车体加速度在时域和频域的幅值、主频均一致.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号