首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地震作用下盾构隧道纵向接头的受力特征   总被引:1,自引:1,他引:0  
实际工程中,盾构隧道纵向接头是结构受力和变形的薄弱部位,针对盾构隧道纵向接头细部构造在地震作用下的受力特征,提出了一套由整体到局部的数值分析流程.首先建立基于纵向等效刚度梁的三维地层-结构时程分析模型,然后以该模型计算得到的纵向内力极值作为盾构隧道整环三维分析模型的外荷载,获取隧道最不利区域边界力,最后将边界力施加在盾构隧道纵向接头局部精细化分析模型之上,分析纵向接头细部构造受力特征;并以某综合管廊工程为背景对该方法进行具体阐述和讨论. 研究结果表明:地震波横向激励时,盾构隧道纵向以往复的水平弯曲为主,而纵向激励时,则以往复的竖向弯曲和纵向拉压为主;在纵向张开量最大的局部区域,不论是轴向拉力工况还是纵向水平弯矩工况,该局部区域都处于受拉状态,两种工况对该局部区域受力模式不产生本质影响;当盾构隧道纵向最大张开量的局部区域受拉时,最大拉应力区均位于管片内侧手孔部位,最大压应力区则围绕螺栓孔成环形分布.   相似文献   

2.
盾构管片拼装过程需要设置环向与纵向螺栓,螺栓接头会对管片整体刚度产生影响。以城市地铁单线单洞盾构隧道为研究对象,采用室内相似模型试验,开展2环管片横向、21环管片纵向加载试验,通过对比分析均质管片与错缝拼装管片,得到了盾构隧道横向和纵向刚度有效率。试验结果表明:隧道各位置的变形与荷载基本呈线性变化;横向抗弯刚度有效率为0.76,纵向抗弯刚度有效率为0.20~0.35。  相似文献   

3.
探究盾构隧道下沉或上浮时管片的受力情况,利用有限元软件ABAQUS建立三维精细化非线性有限元模型,分析在管片转动、错台等影响下连接螺栓、管片的应力发展规律。结果表明:在相同管片张开角条件下,连接螺栓的应力与变形曲率半径呈负相关。当变形曲率半径为3000m、张开角为 0.0020°时,首次出现螺栓屈服现象;当变形曲率半径为∞m、张开角为 0.0400°时,首次发生螺栓破坏;当变形曲率半径≤1000m 时,不论张开角多大,所有螺栓均屈服。从环面方向对连接螺栓进行分析,可以看出环面上各螺栓的应力发展有3个阶段。当张开角增大或变形曲率半径减小时,管片部分区域的拉应力开始减小,相应阶段逐渐发展为塑性抗拉阶段。在小变形曲率半径(300~2000m)范围内,管片的最大主压应力水平更多取决于变形曲率半径的大小,而随转动角的增大其变化较小。  相似文献   

4.
为了确保基坑近接既有地铁盾构隧道的结构安全和正常运营,在对盾构隧道纵向等效刚度模型研究的基础上,建立了隧道纵向变形曲率与螺栓承载状态和线路正常运行要求的公式.结合沈阳某深、大基坑近接既有地铁盾构隧道施工工程的实际情况,通过改变既有盾构隧道相对新建基坑的空间位置关系,进行了多工况三维数值模拟计算分析,得到了基于桩锚支护的基坑近接既有地铁盾构隧道施工的强、弱、无影响分区图,并通过现场的沉降实测结果等验证影响分区标准和控制技术的有效性.研究结果表明:盾构隧道纵向变形曲率半径是基坑近接盾构隧道施工中隧道结构安全和正常使用的关键指标,可将盾构隧道纵向变形曲率半径作为近接影响判断准则;在确定基坑近接既有盾构隧道施工工程的影响分区时,可将盾构隧道轨道线形受影响的临界状态及管片接头极限状态下隧道纵向变形曲率半径,分别作为强弱影响区和弱无影响区的划分阈值.  相似文献   

5.
盾构隧道纵向地震响应分析   总被引:7,自引:2,他引:7  
为了探讨盾构隧道的纵向地震响应特性,采用地层一隧道整体三维有限元模型,对武汉长江越江盾构隧道的地震响应进行了分析,主要研究了合理的盾构隧道力学模型、隧道与地层之间的相互作用以及隧道的振动特性.通过隧道与地层的整体分析,得到了盾构隧道位移和应力的分布及其随时间的变化曲线.计算结果表明:压缩波引起的纵向拉、压应力和剪切波引起的扭曲变形是隧道抗震设计的关键.  相似文献   

6.
为了得到适用于类矩形盾构隧道结构设计模型,通过整环足尺试验模拟类矩形盾构隧道在正常运营工况下的实际受力,得到试验结构的变形和内力,采用等效刚度模型和梁-弹簧模型对试验结果进行分析,得到有效的类矩形盾构隧道结构设计参数. 结果表明:采用等效刚度模型作为类矩形盾构隧道结构计算模型,难以得到同时符合结构长短轴变形的管片刚度折减系数;采用梁-弹簧模型作为类矩形盾构隧道结构计算模型,结构变形和结构内力计算结果和足尺试验结果较为匹配,能真实反应类矩形盾构隧道结构受力,选用梁-弹簧模型作为类矩形盾构隧道结构计算模型更为合理,所研究类矩形结构管片接缝的抗剪刚度建议为341 × 106~368 × 106 N/m;负弯矩接缝抗弯刚度建议为114 × 106~491 × 106 N?m/rad,正弯矩接缝抗弯刚度范围为85 × 106~177 × 106 N?m/rad.   相似文献   

7.
采用傅立叶级数法研究了不同荷载作用下轴力和剪切效应对盾构隧道变形的影响.?计及剪切变形所产生的地基反力,建立了弯曲变形的控制微分方程,推导了剪切变形的计算公式;采用与既有理论解对比的方法,验证了级数解的正确性;通过对比计算,分析了截面形式、端承条件、荷载形式、长高比以及有无弹性地基对盾构隧道剪切变形的影响,剪切刚度对弯...  相似文献   

8.
为了更加合理的确定盾构隧道纵向计算模型的参数,对盾构隧道进行合理的纵向受力分析。通过无量钢化的参数敏感性分析,结合大直径盾构隧道自身的特点,分析了纵向刚度有效率、地层物理力学参数中的弹性模量、泊松比三个因素对纵向计算模型计算结果的影响,为纵向计算模型的改进以及纵向结构计算参数的选取提供参考和依据。  相似文献   

9.
针对矩形基坑开挖对下卧隧道变形影响这类课题,基于Mindlin经典解,考虑了坑底残余应力及围护桩效应的影响,推导了基坑开挖卸荷作用在隧道处附加应力的计算公式.对于埋深超过1.5倍隧道外径的盾构隧道,通过在Pasternak模型上部增加一层弹簧层来考虑上覆土层对隧道的约束作用,建立起地基梁的挠度微分方程.采用有限差分的方法把隧道离散为独立的节点单元,从而求解出隧道纵向的竖向位移和水平位移,最后与有限元数值模拟、工程实测得到的隧道变形数据对比分析.研究表明:在考虑深埋盾构隧道与土体的相互作用时,相对于Pasternak模型方法,笔者方法更能反映两者之间真实的力学行为,得到的解析解更接近于数值解,与实测值吻合度也较高,证明了方法的合理性和优越性;另外,笔者方法省去了大量的建模工作,在设计方案时能够用于初步评估基坑开挖引起下卧盾构隧道纵向变形的影响.  相似文献   

10.
为了研究高速列车脱轨撞击盾构隧道时接头螺栓参数对螺栓失效和管片的影响. 基于ABAQUS有限元软件,建立了盾构隧道管片衬砌分块拼装式模型,利用时速200 km/h列车12.5° 斜向撞击荷载曲线,通过设置接触面单元和具有抗拉、抗剪、抗弯3种刚度组合的连接单元,近似模拟了盾构隧道接缝混凝土接触效应和螺栓连接效应,开展了不同螺栓直径和不同螺栓强度级别下管片接头螺栓的失效研究. 研究结果表明:在列车撞击荷载作用下,接头螺栓主要发生拉伸失效和剪切失效两种失效状态,失效后螺栓拉力和剪力降低为0,并且螺栓失效一般是相对列车行进方向相继出现的;拉伸失效通常出现在被撞块后端纵向螺栓,而被撞块环向螺栓和前端纵向螺栓一般发生剪切失效;各螺栓发生失效的时间随着接头螺栓强度级别的提高或螺栓直径的增大有所延后;不同螺栓参数下被撞块管片位移极大值均在6 cm左右,提高接头螺栓的强度级别和增大螺栓直径,将减小被撞块管片最终位移较大值区域面积以及最终位移极大值的数值,但管片最终位移极大值数值的减幅在10%以内,说明改变螺栓参数无法明显减小管片最终位移.   相似文献   

11.
以上海轨道交通二号线西延段盾构隧道工程为背景,采用三维弹塑性有限元数值方法对盾构推进过程中管片结构进行模拟分析,获得了管片结构错台发生及发展的变化规律。进一步探讨了盾构千斤顶的顶力和螺栓的预紧力对错台大小及发展规律的影响,为盾构施工中减小错台,提高施工精度和质量,以及盾构隧道设计施工提供依据。  相似文献   

12.
对和原型梁比例为1:5的钢筋混凝土简支梁进行了纵向连续加固前、后的静载试验研究,通过对试验结果对比和分析,简支梁模型经过从向连续加固后可有效的提高梁的承载能力,增加梁的抗弯刚度,减小梁跨中截面挠度和端截面转角,降低梁跨中截面受压区混凝土的最大压应力和受拉区最外层受拉钢筋的最大拉应力。  相似文献   

13.
为研究高速铁路多跨简支梁桥墩顶纵向刚度差对梁轨相互作用的影响规律,以合福客运专线段某多跨简支梁桥为例,建立考虑温度、活载、列车制动等荷载作用的16-32 m简支梁桥-双线轨道系统仿真模型,分析了复杂地形地质条件导致的墩顶纵向刚度差异对多跨简支梁-轨道系统受力特性的影响,采用荷载步法考虑多种荷载工况组合,基于国内外现行规范,对不同刚度差条件下系统的受力和变形情况进行评判,从梁轨相互作用角度探讨墩顶纵向刚度差限值的取值方法及建议。得到的主要结论包括:当墩顶纵向刚度满足规范建议刚度限值时,随着墩顶纵向刚度差的增大,钢轨应力、梁轨相对位移、墩顶水平位移等指标略有变化,但均不控制设计;当墩顶纵向刚度差异达100%时,刚度较大墩墩顶水平力快速增大,将导致桥墩设计困难。  相似文献   

14.
地铁车站洞口的混凝土环梁与隧道管片之间一般通过螺栓连接,螺栓往往以预埋的方式锚入车站环梁内,并且与握裹它的混凝土之间存在粘结-滑移变形,这对环缝张开宽度和环梁结构损伤发展都可能产生影响,为进一步明确其中的机理及影响程度,参考既有的粘结-滑移本构模型,利用可细化分析粘结-滑移的有限元分析平台,在充分考虑材料非线性特征的基础上,针对3种不同型号螺栓,分别考虑锚固长度足够和不足两种情况,分析了螺栓在环梁内的粘结-滑移,以及环缝宽度增大的过程;通过量化分析粘结应力和螺栓应力沿螺栓长度的分布,揭示了粘结-滑移对环缝宽度发展的影响机制. 分析表明:采用粘结-滑移模型时,得到的螺栓连接刚度介于嵌固模型和弹簧模型之间,粘结-滑移变形对盾构管片和车站环梁之间环缝宽度的影响不可忽略;仅考虑受拉影响,即便在锚固长度足够的情况下,当螺栓接近屈服时,螺栓与环梁间的粘结-滑移变形在环缝张开宽度中占比最大可达30%,螺栓屈服后,这个滑移占比会随环缝扩展降至8%以下,受此影响,考虑粘结-滑移的螺栓抗拉刚度最低约为完全嵌固模型的1/3.    相似文献   

15.
建立了地铁列车-橡胶浮置板轨道-隧道耦合动力学模型,用MATLAB编制了相应的耦合动力仿真程序,并用ANSYS软件对耦合动力仿真程序计算结果进行了验证.运用耦合动力仿真程序,以地铁B型列车以80 km· h-1分别运行在地铁隧道3种浮置板长度、5种橡胶刚度的橡胶浮置板线路上为例,计算了橡胶浮置板纵向连接方式对耦合系统动力特性的影响.计算结果表明:浮置板纵向铰接对车辆各部件动力特性、最大轮轨力、钢轨动力特性、橡胶垫动力特性、隧道动力特性影响较小,影响在10%以内.浮置板纵向铰接后,浮置板振动加速度有较大幅度的降低,但浮置板最大正弯曲应力有一定幅度的增加.当浮置板较长并且橡胶减振垫刚度较低时,浮置板纵向铰接后,2块相邻浮置板连接处扣件最大拉力有较大幅度的降低,降低幅度可超过80%.浮置板长度为1.25 m时,浮置板轨道不需要纵连铰接;浮置板长度为5.00 m时,橡胶减振垫刚度小于0.01 N· mm-3,浮置板轨道需要纵连铰接;浮置板长度为31.25 m时,橡胶减振垫刚度小于0.02 N·mm-3,浮置板轨道需要纵连铰接.  相似文献   

16.
目前研究中的盾构隧道下穿高速铁路桥梁段扰动性建模方法建模效果较差,本文考虑地层变形规律提出一种新的盾构隧道下穿高速铁路桥梁段扰动性建模方法。首先分析地层变形规律,从地层受压期、地层下沉期以及地层微稳定期3个阶段出发,得到变形阶段示意图,计算地层损失率,根据地层损失率得到轨道-路基-土体有限元模型,通过盾构隧道沉降系数确定模型为横向地层变形状态或纵向地层变形状态。再分析安全系数,得到盾构隧道下穿高速铁路桥梁承载力,选取冲击力、摩擦力以及负荷力,计算桥梁扰动性程度,建立盾构隧道下穿高速铁路桥梁段扰动性模型。最后根据扰动模型判断盾构隧道下穿高速铁路桥梁的扰动状况。该扰动模型具有很强的判断能力,对于盾构隧道下穿高速铁路状况分析有积极意义。  相似文献   

17.
为了研究高速铁路双线隧道衬砌纵向裂缝对结构抗震安全性的影响,针对《铁路隧道设计规范》(TB 10003—2016)IV级围岩开展大型振动台模型试验,试验采用改进的静动耦合剪切模型箱,考虑隧道埋深、衬砌开裂位置和开裂形式3个影响因素,分析隧道衬砌的地震动应变和结构内力响应规律. 试验结果表明:在地震剪切波作用下,浅埋隧道和深埋隧道衬砌结构的破坏形式分别为受拉破坏和受压破坏,破坏位置均首先出现在拱腰,对应的无裂缝衬砌破坏时振动台台面输入波峰值加速度分别为0.8g和0.9g;拱顶和边墙处裂缝对隧道衬砌结构抗震安全性影响较小,而拱腰处裂缝影响显著;浅埋和深埋条件下,拱腰处有裂缝的衬砌破坏时振动台台面输入波峰值加速度分别为0.5g和0.6g;纵向裂缝的开裂形式不同,衬砌破坏时对应的峰值加速度基本相同;在深埋条件下,相比于正截面裂缝,拱腰处斜截面裂缝导致衬砌结构破坏后变形速度加剧.   相似文献   

18.
通过分析连续桥面简支梁桥柔性墩台的纵向受力及变形特性,提出新的计算模型—刚度耦合模型,用以进行柔性墩台纵向水平力的分配计算。给出算例,分别以刚度耦合模型和现有传统刚度模型进行计算,并对结果进行对比分析,得出刚度耦合模型更为安全的结论。  相似文献   

19.
以苏州地铁一号线工程为研究背景,建立考虑管片分块、连接螺栓及施工过程各因素的三维非连续几何模型,对盾构法施工过程进行仿真模拟.论述了盾构开挖系统模型的几何非线性方程组的推导过程,盾构顶进推力及注浆材料性质的计算方法.模拟计算结果显示:盾构管片内外侧表面大部分区域处于受压状态,拱顶与拱底部位及靠近连接螺栓的部分区域处于受拉状态;受盾构顶推力作用,盾构开挖面前方土体有一个典型的隆起区域,地表最大隆起值为2.5 mm,出现在盾构开挖面前方8.5 m处;盾构开挖面后方土体沿隧道纵向的沉降受注浆材料影响随时间变化,并逐渐趋于稳定;在盾构法施工中,各管片连接处的土体受施工影响明显,土体塑性区范围较大.  相似文献   

20.
盾构隧道上方大面积加载或卸载会引起隧道结构发生纵向变形,过大的沉降或隆起会使隧道结构发生裂缝或是环缝张开,导致渗漏水甚至破坏。把隧道结构等效为处于土层中的弹性地基梁,利用Boussinesq解计算加(卸)载在隧道下卧土层中产生的附加应力,基于Winkler模型计算隧道结构的变形。结合上海某地铁隧道上方大面积卸载后加载的工程实例,计算隧道结构的纵向变形,判断结构的安全性,并用有限元计算验证理论计算公式的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号