首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
合理的常规公交停靠站布局可以减轻停靠站所属路段的交通压力,降低公交车在公交停靠站时对社会车辆的影响.本文主要讨论公交停靠站不同站台形式对相邻车道社会车辆速度的影响.通过对重点路段进行的数据调查、分析,体现出停靠站影响范围内的道路交通流量与车辆速度的关系,并建立模型,分析站点同时停靠不同车辆数的情况下,速度与流量之间的关系曲线.通过道路服务等级判定,在不同公交线路数及道路交通流量下,常规公交停靠站站台形式的选择方法.  相似文献   

2.
基于GPS浮动车的城市主干道交通服务水平实时评估模型   总被引:1,自引:0,他引:1  
提出城市主干道道路交通服务水平及其实时评估的概念,建立了基于模糊综合评判的城市主干道交通服务水平实时评估模型,模型以实时的GPS浮动车检测数据为基础,将获得的路段平均速度、速度变化系数和低速行程时间比等作为特性参数,建立了特性参数和各级服务水平下交通状态模式之间的关系,采用模糊综合评判方法,实现了道路交通服务水平的实时评估。分析了评价周期对模型实时性和有效性的影响,并运用实例进行了验证。  相似文献   

3.
车联网中驾驶员反应时间实时估计方法   总被引:1,自引:0,他引:1  
结合车辆非线性分段制动特性和车辆状态数据对驾驶员反应时间进行实时估 计,采用特征数据拟合出初速度与减速度上升时间关系模型,通过BP神经网络推算减速 度上升过程中减速度随时间非线性变化关键参数,并在此基础上基于车辆动力学运动规 律求解车辆分段制动位移,通过实际位移与理论位移等价关系实现驾驶员反应时间实时 估计,最后利用Newell 跟驰模型场景对本文提出方法进行仿真验证.结果表明:不同初速 度条件下,反应时间估计值平均误差不超过0.022 s;不同反应时间条件下,反应时间估计 值平均误差不超过0.013 s.本文提出的反应时间估计方法不用增加通信负担和额外设备, 能够达到较高精度,具备更优的适应性、可用性及工程价值.  相似文献   

4.
基于状态空间方法构建适用于城市轨道交通网络的短时客流OD(origindestination) 估计模型.利用自动售检票数据分析得到OD间乘客行程时间分布特征,构建基于行程时间分布的客流到达系数,以此建立OD流与车站进出站客流间相互关系,并以车站客流分离率为状态变量构建结构化OD矩阵估计状态空间模型.以北京市轨道交通为对象进行案例分析,结果表明,当估计时段长度为15 min 时,估计平均相对误差为 35.5%;为30 min 时,估计平均相对误差为20.4%;为60 min 时,估计平均相对误差为 16.3%.所构建模型能能有效解决城市轨道交通短时客流估计问题,具有一定的实用性.  相似文献   

5.
为提高运动车辆定位可靠性与精度,研究了基于交通无线传感器网络的运动车辆定位系统.根据车辆位置区域随速度变化的规律,提出了一种变区间搜索量子粒子群算法对测量的车辆定位参量进行坐标粗估计,由于噪声干扰和信号传输延时,坐标粗估计值存在一定的误差.根据车辆的运动特性引入机动目标的当前统计模型,采用扩展Kalman滤波对坐标粗估计值存在的误差进行修正,以定位速度与精度为评价指标对定位方法进行了验证.验证结果表明:无线传感网络节点可大量布设的特点提高了定位可靠性;量子粒子群中引入变区间使定位速度提高了39.13%;Kalman误差修正使得定位精度提高了56.48%.可见,本文方法可以有效提高运动车辆定位速度与准确性.  相似文献   

6.
为分析高速公路交通流检测数据质量,本文构建平方流量误差界(Squared Flow Error Bound, SFEB)和扩展卡尔曼滤波(Extended Kalman Filter, EKF)的决策级融合模型SFEB-EKF,在检测器空间覆盖不足情况下,计算检测路段和无检测器路段的交通状态估计误差界限。与SFEB 算法相比,融合模型利用EKF交通状态估计模型估计全路段交通状态,基于得到的估计样本计算全路段交通状态估计误差下界。同时,采用最近邻法(Nearest Neighbor Method, NNM)计算全路段交通状态估计误差上界。应用开源高速公路数据集测试模型,结果表明,与需要输入真实样本的SFEB算法相比,融合模型SFEB-EKF在缺少真实样本情况下,能取得相似的结果且误差保持 在5%以内,不同检测器覆盖率实验下模型表现出良好的稳定性。本文模型通过给出无检测器路段交通状态估计界限,为高速公路交通检测器布设方案提供参考。  相似文献   

7.
针对高速公路管控和决策应对交通状态进行准确、可靠和精细化估计的需求,本文提出了一种基于多源数据+元胞传输模型(Multi-Source Data Cell Transmission Model,MD-CTM)的交通状态估计方法。该方法针对传统CTM模型要求元胞长度必须一致的局限性,提出了一种元胞长度划分的优化方法,能够灵活调整元胞长度和数量。同时,应用卡尔曼滤波技术,将ETC门架流量、稀疏视频检测器流量和样本车辆平均速度数据融合,并与CTM模型相结合,实现高速公路元胞级交通状态估计。为了验证本文提出方法的有效性和准确性,我们利用VISSIM软件构建了长度5 km的高速公路仿真场景。仿真案例结果表明,本文提出的MD-CTM模型能够较为准确地反映不同流量需求下交通流状态的时空演化特征,且相较于CTM模型,其元胞密度估计精度提高12.59%~36.26%。此外,本文选取了成都市绕城高速路段实际场景,对模型的运行效果进行了展示。  相似文献   

8.
针对公交运行到站时间不稳定的现象,本文提出实时的公交速度控制方法,以车头时距平均绝对误差最小为目标进行求解.设计了3种公交运行场景,基于实时道路交通状态及乘客到达率,求解期望速度.并通过数值仿真对公交车头时距的稳定性、公交运行时间的可靠性、乘客等待平均时间及运行速度进行评价.结果显示,3种场景下,不考虑道路交通流影响的速度控制方法效果最佳,可以提高公交车头时距的稳定性(77.63%)及公交运行的可靠性(93.5%).如进一步考虑道路交通流影响,乘客的平均等车时间会略有增加(6.12%).因此速度控制方法更适用于受道路交通流影响较小或长度较短的线路.此外,本研究还发现,在要达到公交运行可靠性的目标下,公交站间运行速度并不是越快越好.  相似文献   

9.
城市主干路路段行程时间估计的BPR修正模型   总被引:6,自引:2,他引:4  
为提高城市主干路交通流平均行程时间的估计精度,根据路段上游检测器采集的截面流量,建立了3种BPR(bureau of public roads)修正模型,包括全状态累积流量BPR修正模型、分状态标定的BPR模型和分状态累积流量BPR修正模型.仿真结果表明:全状态累积流量BPR修正模型明显优于传统的BPR模型;分状态标定的BPR模型和分状态累积流量BPR修正模型可以进一步提高估计精度,且后者可将阻滞交通状态下的平均估计误差降低至8.05%.  相似文献   

10.
为准确估计山区小城市路段行程时间,以山区小城市道路为研究对象,在分析其交通特性和传统BPR模型的基础上,通过定义路段累计流量,构造了基于路段累计流量的机非混行道路行程时间修正模型。采用人工记录法获取非拥堵状态下的实测数据,并通过VISSIM仿真得到拥堵状态下的实验数据,根据大量数据标定修正BPR模型的主要参数,并对两种模型进行误差分析。结果表明:山区小城市干路行程时间估计中,修正BPR模型的误差均值为4.597%,传统BPR模型的误差均值为35.021%;支路行程时间估计中,修正BPR模型的误差均值为3.120%,传统BPR模型的误差均值为46.737%。修正BPR模型的估计效果明显优于传统BPR模型,且非机动车干扰对支路路段行程时间的影响更为显著。  相似文献   

11.
由于城市道路交通行为的复杂性以及高质量交通数据的缺乏,实时估计城市主干道的旅行时间具有一定的难度.基于实时的快速公交(BRT)以及信号配时数据,作了一系列研究,用以估计主干道旅行时间以及交通服务水平(LOS).本文通过将公交车的排队延误时间、平均信号灯等待时间和自由流旅行时间综合在一起来实现旅行时间的估计.并以Valley Transportation Authority(VTA) BRT和智能驾驶系统作为数据源进行实验.实验结果表明,本文提出的估计主干道性能的方法非常有效.其中根均方误差(RMSE)和根均方百分比误差(RMSPE)分别为49s和9%,LOS估计的精度高达73%.  相似文献   

12.
路网宏观基本图(Macroscopic Fundamental Diagrams,MFD)的估测方法有基于固定检测器数据估测法和基于浮动车数据估测法,但很少有文献将两者结合起来,鉴于此,本文提出以车联网环境下联网车数据估测的交通参数为检验数据,引入动态误差,建立两个自适应加权平均数据融合模型,对两种估测法所得的路网加权交通流量和路网加权交通密度分别进行数据融合,从而更加准确地估测路网MFD.为验证模型的有效性,以广州天河区核心路网为研究区域,通过Vissim交通仿真建模分析,对比各种估测法所得路网MFD参数的平均绝对相对误差、路网MFD的状态比和差异值.结果表明,经数据融合后的路网MFD参数平均绝对相对误差和路网MFD差异值均最小,最接近标准路网MFD.  相似文献   

13.
在讨论探测车样本数量统计需求的基拙上,提出了一种基于探测车技术的路段平均速度自适应加权指数平滑佑计模型,模型中加权系数随着跟踪误差大小和路段上探测车数量的变化而自适应调整,并利用VISSIM仿真数据验证了该模型。结果表明:在路段上探测车占交通流比例随时间变化且不能充分满足统计要求的情况下,相对传统的算术平均方法,基于指数平滑的路段平均速度佑计能够有效提高估计精度,并且可有效减小由路段上探测车数量变化而引起的速度佑计方差。  相似文献   

14.
随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道级速度预测模型.该模型利用基于信息熵的灰色关联分析提取空间特征变量,采用长短期记忆神经网络提取空间特征变量的时间特征,并利用门限递归单元神经网络得到预测结果.通过北京市东二环路车道断面实测微波数据验证发现,提取车道交通流的时空特征,CDL模型能够很好地拟合不同车道不同时段的速度变化趋势,可有效地实现车道速度的单步及多步预测,且该模型的预测精度和稳定性均优于传统预测模型.  相似文献   

15.
In this paper, market penetration of a probe vehicle for real-time traffic data collection is discussed. A new comprehensive probe sample size model that satisfies the need of traffic flow parameter estimation and traffic network coverage is established, in which many factors like location error, probe ‘report’ transmission interval, probe data analysis interval, traffic flow density, link length, and road type are included. Based on this model, this paper proves the relationship between market penetration of the probe vehicle and other indexes, when probe data is used for link average speed estimation based on VISSIM simulation. The simulation result shows that the sample size model can provide effective probe information to accomplish the estimation of link speed.  相似文献   

16.
随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道级速度预测模型.该模型利用基于信息熵的灰色关联分析提取空间特征变量,采用长短期记忆神经网络提取空间特征变量的时间特征,并利用门限递归单元神经网络得到预测结果.通过北京市东二环路车道断面实测微波数据验证发现,提取车道交通流的时空特征,CDL模型能够很好地拟合不同车道不同时段的速度变化趋势,可有效地实现车道速度的单步及多步预测,且该模型的预测精度和稳定性均优于传统预测模型.  相似文献   

17.
以交通流率、速度和占有率为输入参数,采用交叉验证法优化模型惩罚参数C和核函数参数γ,建立以径向基为核函数的支持向量机模型,判断道路断面交通流状态;结合设计的道路网综合状态指数,依据自由流、拥挤流和阻塞流状态下占有率划分区间,构建城市快速路网交通流状态判别方法;最后以某一区域路网为例,进行了实证性研究.结果表明:该方法对道路断面交通流状态判别精度可达92.22%;同时能够实现道路网范围内对自由流、拥挤流和阻塞流状态的判别,判别精度可达86.67%.  相似文献   

18.
为解决混合交通流饱和流率测算的实时性和时变性问题,实时获得混合交通流的饱和流率用以信号配时,本文提出基于自动车牌识别数据(Automatic License Plate Recognition,ALPR)的混合交通流饱和流率实时自动估计方法。首先,分信号周期提取车头时距数据,在当前车和后车车辆类型确定时车头时距满足同一正态分布的假设基础上,构建车头时距的高斯混合模型并应用 EM(Expectation Maximization) 算 法 求 解 ;其 次 ,基 于 赤 池 信 息 准 则 (Akaike Information Criterion,AIC)选取高斯混合模型的最优个数,拟合数据得到高斯混合模型参数;最后,根据车头时距的高斯混合模型推算出混合交通流饱和流率。以杭州城市道路3条路段的ALPR数据为例,分析基于 ALPR 数据获取车头时距的采样误差,对模型进行验证,并与传统的 HCM(Highway Capacity Manual)方法进行对比。结果表明:基于ALPR数据的车头时距采样误差满足精度要求; 与HCM的实测法相比,模型所得的混合饱和交通流率相对误差小,结果准确;该方法与传统的标准车流饱和流率折算法效果相近,并考虑混合交通流时变特性,能自动部署实时计算,鲁棒性良好,有实际应用意义。  相似文献   

19.
基于对交通流量预测存在的问题的分析,用极大似然估计法对路段交通流量进行预测.这种方法的实质,是将连续的观测时段的上游观测量作为自变量,用极大似然估计法估计出观测量与下游预测量之间的关系,从而预测交通流量.实例结果表明,预测值与实际值的最大误差率为5.76%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号