首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Providing commuters with traffic information or advising them of alternative routes during traffic incidents can alleviate congestion. For decades, advanced traveler information services (ATIS) have been devised and dedicated to this role. ATIS comprises a wide variety of technologies across the world, including radio traffic information (RTI) advisory service. RTI is common in both developed and developing countries. Although extensive literature and evaluation results of ATISs and RTI are available in developed countries, little attention has been devoted to that in developing countries. This work provides a modeling platform to study drivers' response to en route traffic information provided by Radio‐Payam broadcasting service in Tehran, the capital city of the developing country of Iran. The results are compared with counterpart cases in developed countries. Past studies and this study have employed conventional discrete models for drivers' response, such as ordered logit and ordered probit. This work evaluates the accuracy level of these conventional models in comparison with a developed neural‐network (NN) model, because it has been widely proven that NN models are highly precise. It has also been found that, apart from reliability, the conventional models are within an acceptable level of prediction accuracy compared with the NN models. The results show a high degree of similarities between the case of Tehran and its counterparts in the developing countries. The results also deliver some insights on how to improve or better implement the ATIS technologies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper focuses on modeling agents’ en-route diversion behavior under information provision. The behavior model is estimated based on naïve Bayes rules and re-calibrated using a Bayesian approach. Stated-preference driving simulator data is employed for model estimation. Bluetooth-based field data is employed for re-calibration. Then the behavior model is integrated with a simulation-based dynamic traffic assignment model. A traffic incident scenario along with variable message signs (VMS) is designed and analyzed under the context of a real-world large-scale transportation network to demonstrate the integrated model and the impact of drivers’ dynamic en-route diversion behavior on network performance. Macroscopic Fundamental Diagram (MFD) is employed as a measurement to represent traffic dynamics. This research has quantitatively evaluated the impact of information provision and en-route diversion in a VMS case study. It proposes and demonstrates an original, complete, behaviorally sound, and cost-effective modeling framework for potential analyses and evaluations related to Advanced Traffic Information System (ATIS) and real-time operational applications.  相似文献   

3.
Since advanced traveler information systems (ATIS) have been introduced, their potential benefits as well as their drawbacks have been discussed controversially. This will continue as long as the drivers’ reactions upon current or even predictive information about the traffic situation are not known. Thus, traffic models that also consider this feedback are necessary. In this paper, we address a basic two-route scenario with different types of information and study the impact of it using simulations. The road users are modeled as agents, a natural and promising approach to describe them. Different ways of generating current information are tested. It is pointed out that the nature of the information very much influences the potential benefits of the ATIS.  相似文献   

4.
Abstract

Under Intelligent Transportation Systems (ITS), real-time operations of traffic management measures depend on long-term planning results, such as the origin–destination (OD) trip distribution; however, results from current planning procedures are unable to provide fundamental data for dynamic analysis. In order to capture dynamic traffic characteristics, transportation planning models should play an important role to integrate basic data with real-time traffic management and control. In this paper, a heuristic algorithm is proposed to establish the linkage between daily OD trips and dynamic traffic assignment (DTA) procedures; thus results from transportation planning projects, in terms of daily OD trips, can be extended to estimate time-dependent OD trips. Field data from Taiwan are collected and applied in the calibration and validation processes. Dynamic Network Assignment-Simulation Model for Advanced Road Telematics (DYNASMART-P), a simulation-based DTA model, is applied to generate time-dependent flows. The results from the validation process show high agreement between actual flows from vehicle detectors (VDs) and simulated flows from DYNAMSART-P.  相似文献   

5.
Congestion pricing has been proposed and investigated as an effective means of optimizing traffic assignment, alleviating congestion, and enhancing traffic operation efficiencies. Meanwhile, advanced traffic information dissemination systems, such as Advanced Traveler Information System (ATIS), have been developed and deployed to provide real-time, accurate, and complete network-wide traffic information to facilitate travelers’ trip plans and routing selections. Recent advances in ATIS technologies, especially telecommunication technology, allow dynamic, personalized, and multimodal traffic information to be disseminated and impact travelers’ choices of departure times, alternative routes, and travel modes in the context of congestion pricing. However, few studies were conducted to determine the impact of traffic information dissemination on toll road utilizations. In this study, the effects of the provisions of traffic information on toll road usage are investigated and analyzed based on a stated preference survey conducted in Texas. A Bayesian Network (BN)-based approach is developed to discover travelers’ opinions and preferences for toll road utilization supported by network-wide traffic information provisions. The probabilistic interdependencies among various attributes, including routing choice, departure time, traffic information dissemination mode, content, coverage, commuter demographic information, and travel patterns, are identified and their impacts on toll road usage are quantified. The results indicate that the BN model performs reasonably well in travelers’ preference classifications for toll road utilization and knowledge extraction. The BN Most Probable Explanation (MPE) measurement, probability inference and variable influence analysis results illustrate travelers using highway advisory radio and internet as their primary mode of receiving traffic information are more likely to comply with routing recommendations and use toll roads. Traffic information regarding congested roads, road hazard warnings, and accident locations is of great interest to travelers, who tend to acquire such information and use toll roads more frequently. Travel time formation for home-based trips can considerably enhance travelers’ preferences for toll road usage. Female travelers tend to seek traffic information and utilize toll roads more frequently. As expected, the information provided at both pre-trip and en-route stages can positively influence travelers’ preferences for toll road usage. The proposed methodology and research findings advance our previous study and provide insight into travelers’ behavioral tendencies concerning toll road utilization in support of traffic information dissemination.  相似文献   

6.
As intelligent transportation systems (ITS) approach the realm of widespread deployment, there is an increasing need to robustly capture the variability of link travel time in real-time to generate reliable predictions of real-time traffic conditions. This study proposes an adaptive information fusion model to predict the short-term link travel time distribution by iteratively combining past information on link travel time on the current day with the real-time link travel time information available at discrete time points. The past link travel time information is represented as a discrete distribution. The real-time link travel time is represented as a range, and is characterized using information quality in terms of information accuracy and time delay. A nonlinear programming formulation is used to specify the adaptive information fusion model to update the short-term link travel time distribution by focusing on information quality. The model adapts good information by weighing it higher while shielding the effects of bad information by reducing its weight. Numerical experiments suggest that the proposed model adequately represents the short-term link travel time distribution in terms of accuracy and robustness, while ensuring consistency with ambient traffic flow conditions. Further, they illustrate that the mean of a representative short-term travel time distribution is not necessarily a good tracking indicator of the actual (ground truth) time-dependent travel time on that link. Parametric sensitivity analysis illustrates that information accuracy significantly influences the model, and dominates the effects of time delay and the consistency constraint parameter. The proposed information fusion model bridges key methodological gaps in the ITS deployment context related to information fusion and the need for short-term travel time distributions.  相似文献   

7.
ABSTRACT

Based on the increasing demands of transportation development, the concept of an Intelligent Transportation System (ITS) has received increasing attention in both academic and industry arenas. It integrates information, communications, computers and other technologies, and applies them in the field of transportation to build an integrated system of people, roads and vehicles by utilizing advanced data communication technologies. It can establish a large, fully functioning, real-time, accurate and efficient transportation management system. Intelligent transportation systems shift the focus from road managers to road users. In order to achieve this purpose, intelligent transportation systems use advanced technology to provide drivers with convenient information to help reduce traffic congestion and to increase available road capacity. This special issue is dedicated to exploring the most recent advances in intelligent transportation systems and big data based on intelligent technology.  相似文献   

8.
We consider a specific advanced traveler information systems (ATIS) whose objective is to reduce drivers’ travel time uncertainty with recurrent network congestion through provision of traffic information. Since the provided information is still partial or imperfect, drivers equipped with an ATIS cannot always find the shortest travel time route and thus may not always comply with the advice provided by ATIS. Thus, there are three classes of drivers on a specific day: drivers without ATIS, drivers with ATIS but without compliance with ATIS advice, drivers with ATIS and in compliance with ATIS advice. All three classes of drivers make route choice in a stochastic manner, but with different degree of uncertainty of travel time on the network. In this paper we investigate the interactions among the three classes of drivers in an ATIS environment using a multiple behavior stochastic user equilibrium model. By assuming that the market penetration of ATIS is an increasing function of the actual private gain (time saving minus the cost associated with system use) derived from ATIS service, and the ATIS compliance rate of equipped drivers is given as the probability of the actual travel time of complied drivers being less than that of non-complied drivers, we determine the equilibrium market penetration and compliance rate of ATIS and the resulting equilibrium network flow pattern using an iterative solution procedure.  相似文献   

9.
The travel decisions made by road users are more affected by the traffic conditions when they travel than the current conditions. Thus, accurate prediction of traffic parameters for giving reliable information about the future state of traffic conditions is very important. Mainly, this is an essential component of many advanced traveller information systems coming under the intelligent transportation systems umbrella. In India, the automated traffic data collection is in the beginning stage, with many of the cities still struggling with database generation and processing, and hence, a less‐data‐demanding approach will be attractive for such applications, if it is not going to reduce the prediction accuracy to a great extent. The present study explores this area and tries to answer this question using automated data collected from field. A data‐driven technique, namely, artificial neural networks (ANN), which is shown to be a good tool for prediction problems, is taken as an example for data‐driven approach. Grey model, GM(1,1), which is also reported as a good prediction tool, is selected as the less‐data‐demanding approach. Volume, classified volume, average speed and classified speed at a particular location were selected for the prediction. The results showed comparable performance by both the methods. However, ANN required around seven times data compared with GM for comparable performance. Thus, considering the comparatively lesser input requirement of GM, it can be considered over ANN in situations where the historic database is limited. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes a methodology for validating online dynamic O–D matrix estimation models using loop detector data in large-scale transportation networks. The simulation procedure focuses on travel aspects related to the collective trip structure of users, including the amount and duration of trips between O–D pairs, trip departure rates, average travel time from each origin and combinations of them. The analysis identifies emerging systematic patterns between these factors and issues related to the model performance, including network scale effects. This procedure aims to enhance the usage of prior O–D information based on, e.g. travel surveys, that are typically used in the estimation process. Moreover, it seeks to integrate the validation of dynamic O–D matrix estimation models with strategies for identifying target population groups for online planning and assessment of real-time travel information services within the context of Advanced Traveler Information Systems (ATIS).  相似文献   

11.
Growing concerns regarding urban congestion, and the recent explosion of mobile devices able to provide real-time information to traffic users have motivated increasing reliance on real-time route guidance for the online management of traffic networks. However, while the theory of traffic equilibria is very well-known, fewer results exist on the stability of such equilibria, especially in the context of adaptive routing policy. In this work, we consider the problem of characterizing the stability properties of traffic equilibria in the context of online adaptive route choice induced by GPS-based decision making. We first extend the recent framework of “Markovian Traffic Equilibria” (MTE), in which users update their route choice at each intersection of the road network based on traffic conditions, to the case of non-equilibrium conditions, while preserving consistency with known existence and uniqueness results on MTE. We then exhibit sufficient conditions on the network topology and the latency functions for those MTEs to be stable in the sense of Lyapunov for a single destination problem. For various more restricted classes of network topologies motivated by the observed properties of travel patterns in the Singapore network, under certain assumptions we prove local exponential stability of the MTE, and derive analytical results on the sensitivity of the characteristic time of convergence to network and traffic parameters. The results proposed in this work are illustrated and validated on synthetic toy problems as well as on the Singapore road network with real demand and traffic data.  相似文献   

12.
In view of the serious traffic congestion during peak hours in most metropolitan areas around the world and recent improvement of information technology, there is a growing aspiration to alleviate road congestion by applications of electronic information and communication technology. Providing drivers with dynamic travel time information such as estimated journey times on major routes should help drivers to select better routes and guide them to utilise existing expressway network. This can be regarded as one possible strategy for effective traffic management. This paper aims to investigate the effects and benefits of providing dynamic travel time information to drivers via variable message signs at the expressway network. In order to assess the effects of the dynamic driver information system with making use of the variable message signs, a time-dependent traffic assignment model is proposed. A numerical example is used to illustrate the effects of the dynamic travel time information via variable message signs. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
智能交通系统是一个高科技集成系统,它综合运用各种高新技术于整个交通管理系统之中,可以系统、全面、高效地提高交通运输的安全性.文章阐述了智能交通系统在交通安全中的作用及在福州市的应用情况,指出了福州市发展智能交通的方向,以提高福州市的交通安全管理水平.  相似文献   

14.
‘Vehicle miles traveled’ (VMT) is an important performance measure for highway systems. Currently, VMT [or ‘annual average daily traffic’ (AADT)] is estimated from a combination of permanent counting stations and short-term counts done at specified locations as part of the Highway Performance Monitoring System (HPMS) mandated by the US Federal Highway Administration. However, on some roadway sections, Intelligent Transportation Systems (ITS) such as detectors and cameras also produce traffic data. The question addressed in this paper is whether and under what conditions ITS systems data could be used instead of HPMS short-term counts (called ‘coverage counts’)? This paper develops a methodology for determining a threshold number of missing daily traffic counts, or alternatively, the number of valid ITS data observations needed, in order to confidently replace the HPMS coverage counts with ITS data.

Because ITS counts, coverage counts, and actual ground counts (e.g. continuous counts) cannot be found coexisting on a roadway section, it is hard to compare them directly. In this paper, the Monte Carlo simulation method is employed to generate synthetic ITS counts and coverage counts from a set of relatively complete traffic counts collected at a continuous count station. Comparisons are made between simulated ITS counts, coverage counts, and actual ground counts. The simulation results indicate that when there are<330 daily traffic counts missing in a set of ITS counts in a year, that is, when there are at least 35 days of valid data, ITS counts can be used to derive a better AADT than using coverage counts. This result is applied to calculate the VMT for the Hampton Roads region in Virginia. The comparison between the VMTs derived with using and not using the threshold number indicates that these two VMTs are significantly different.  相似文献   

15.
Considerable public and private resources are devoted to the collection and dissemination of real-time traffic information in the Chicago area. Such information is intended to help individuals make more informed travel decisions, yet its effect on behavior remains largely unexplored. This study evaluates the effect of traffic information on travelers' route and departure time changes and provides a stronger basis for developing advanced information systems. Downtown Chicago automobile commuters were surveyed during the AM peak period. The results indicate that a majority of the respondents access, use and respond to information. For example, individuals use travel information to reduce their anxiety—even if they do not change travel decisions; this indicates that information may have “intrinsic” value. That is, simply knowing traffic conditions is valued by travelers. More than 60% of the respondents had used traffic information to modify their travel decisions. Multivariate analysis using the ordered probit model showed that individuals were more likely to use traffic reports for their route changes if they perceived traffic reports to be accurate and timely, and frequently listened to traffic reports. Respondents were more likely to change their departure times if they perceived traffic reports to be accurate and relevant, and frequently listened to traffic reports. The implication for Advanced Traveler Information Systems are that they may be designed to support both enroute and pre-trip decisions. ATIS performance, measured in terms of accuracy, relevance and timeliness would be critical in the success of such systems. Further, near-term prediction of traffic conditions on congested and unreliable routes (where conditions change rapidly) and incident durations is desirable.  相似文献   

16.
In the field of traffic flow, speed, density, time, and distance are fundamental variables analyzed to predict traffic conditions. Reliable sources of information are gauged using tested mathematical approaches that have been developed. However, a fundamental diagram that could serve as a basis for expression techniques has not been devised. Red–green–blue (RGB) color modeling was used to overcome this limitation in traffic flow. The purpose of this study is to provide a way to understand traffic flow conditions based on features of three traffic flow elements simultaneously. The limitation of three‐dimensional expressions in two‐dimensional paper was extended to multi‐dimensional information. Information on speed, density, and flow were combined into a single RGB color and given the name RGB flow‐density space time‐distance space. This cancels out the effect of each individual's vehicular trajectories and contains five major components of a specific road section. The new gizmo aims to provide information on traffic flow conditions in transition and to stimulate further approaches related to the predictions and understanding of traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The new generation of GPS-based tolling systems allow for a much higher degree of road sensing than has been available up to now. We propose an adaptive sampling scheme to collect accurate real-time traffic information from large-scale implementations of on-board GPS-based devices over a road network. The goal of the system is to minimize the transmission costs over all vehicles while satisfying requirements in the accuracy and timeliness of the traffic information obtained. The system is designed to make use of cellular communication as well as leveraging additional technologies such as roadside units equipped with WiFi and vehicle-to-vehicle (V2V) dedicated short-range communications (DSRC). As opposed to fixed sampling schemes, which transmit at regular intervals, the sampling policy we propose is adaptive to the road network and the importance of the links that the vehicle traverses. Since cellular communications are costly, in the basic centralized scheme, the vehicle is not aware of the road conditions on the network. We extend the scheme to handle non-cellular communications via roadside units and vehicle-to-vehicle (V2V) communication. Under a general traffic model, we prove that our scheme always outperforms the baseline scheme in terms of transmission cost while satisfying accuracy and real-time requirements. Our analytical results are further supported via simulations based on actual road networks for both the centralized and V2V settings.  相似文献   

18.
Advances in Information and Communication Technologies (ICT) allow the transportation community to foresee dramatic improvements for the incoming years in terms of a more efficient, environmental friendly and safe traffic management. In that context, new ITS paradigms like Cooperative Systems (C-ITS) enable an efficient traffic state estimation and traffic control. C-ITS refers to three levels of cooperation between vehicles and infrastructure: (i) equipped vehicles with Advanced Driver Assistance Systems (ADAS) adjusting their motion to surrounding traffic conditions; (ii) information exchange with the infrastructure; (iii) vehicle-to-vehicle communication. Therefore, C-ITS makes it possible to go a step further in providing real time information and tailored control strategies to specific drivers. As a response to an expected increasing penetration rate of these systems, traffic managers and researchers have to come up with new methodologies that override the classic methods of traffic modeling and control. In this paper, we discuss some potentialities of C-ITS for traffic management with the methodological issues following the expansion of such systems. Cooperative traffic models are introduced into an open-source traffic simulator. The resulting simulation framework is robust and able to assess potential benefits of cooperative traffic control strategies in different traffic configurations.  相似文献   

19.
Nowadays, new mobility information can be derived from advanced traffic surveillance systems that collect updated traffic measurements, both in fixed locations and over specific corridors or paths. Such recent technological developments point to challenging and promising opportunities that academics and practitioners have only partially explored so far.The paper looks at some of these opportunities within the Dynamic Demand Estimation problem (DDEP). At first, data heterogeneity, accounting for different sets of data providing a wide spatial coverage, has been investigated for the benefit of off-line demand estimation. In an attempt to mimic the current urban networks monitoring, examples of complex real case applications are being reported where route travel times and route choice probabilities from probe vehicles are exploited together with common link traffic measurements.Subsequently, on-line detection of non-recurrent conditions is being recorded, adopting a sequential approach based on an extension of the Kalman Filter theory called Local Ensemble Transformed Kalman Filter (LETKF).Both the off-line and the on-line investigations adopt a simulation approach capable of capturing the highly nonlinear dependence between the travel demand and the traffic measurements through the use of dynamic traffic assignment models. Consequently, the possibility of using collected traffic information is enhanced, thus overcoming most of the limitations of current DDEP approaches found in the literature.  相似文献   

20.
Traffic flow prediction is an essential part of intelligent transportation systems (ITS). Most of the previous traffic flow prediction work treated traffic flow as a time series process only, ignoring the spatial relationship from the upstream flows or the correlation with other traffic attributes like speed and density. In this paper, we utilize a linear conditional Gaussian (LCG) Bayesian network (BN) model to consider both spatial and temporal dimensions of traffic as well as speed information for short‐term traffic flow prediction. The LCG BN allows both continuous and discrete variables, which enables the consideration of categorical variables in traffic flow prediction. A microscopic traffic simulation dataset is used to test the performance of the proposed model compared to other popular approaches under different predicting time intervals. In addition, the authors investigate the importance of spatial data and speed data in flow prediction by comparing models with different levels of information. The results indicate that the prediction accuracy will increase significantly when both spatial data and speed data are included. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号