首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
马鞍山长江公路大桥左汉主桥为2×1 080 m的三塔两跨悬索桥,中塔为钢-混叠合塔.通过对纵向为A形、人字形、I形3种结构形式进行研究分析,确定中塔采用I形钢-混叠合塔.中塔高为175.8 m,其中钢上塔柱高127.8 m,塔柱断面为单箱多室构成,钢-混接头采用无粘结预应力钢绞线进行锚固.钢塔架设中采用世界最大塔吊D5200K-240,通过厂内钢塔制造精度控制、现场跟踪测量、主动横撑线形调整,结合厂内预拼数据判断接头调整量等措施,保证钢塔安装精度,加快钢塔安装速度,创造了钢塔安装精度、安装速度的新记录.  相似文献   

2.
马鞍山长江公路大桥左汊主桥为(360+2×1080+360) m的三塔两跨悬索桥,中塔采用钢-混叠合、塔梁固结门式结构,下塔柱为预应力钢筋混凝土结构,上塔柱为钢结构,钢塔共分21个节段,首节采用浮吊安装,标准节段长6 m ,最大起吊重达235 t ,采用塔吊进行安装。为确保钢塔线形满足要求,对影响钢塔安装精度因素进行分析,形成以控制钢塔制造质量为核心、钢塔首节段安装精度为基础的线形控制流程,对钢塔节段进行工厂制造控制和现场安装控制。工厂制造控制包括零部件加工、块体制作、节段组拼、端面机加工、预拼装;现场安装控制包括首节段安装、标准节段安装、横梁与钢塔的连接。实践表明,该桥采用以控制钢塔制造精度为核心的钢塔线形控制技术进行钢塔架设施工,施工过程中钢塔制造精度和安装精度满足要求,实现了钢塔线形控制的目的。  相似文献   

3.
泰州长江公路大桥主桥为(390+1 080+1 080+390)m的三塔悬索桥,该桥中塔墩采用钢塔结构,其钢塔墩底节通过136根锚杆和基础连接。经过对工厂组拼和现场组拼2种锚杆定位方案比选,该桥采用现场组拼方案。定位架是锚杆现场定位的基础,由立柱、平联、斜撑及锚杆限位梁组成。现场定位时首先安装底梁支架,然后采用限位板和千斤顶进行底梁的初定位和精确定位,随后接高定位架,分3步完成锚杆的吊装定位(先进行顶部限位板的精确定位,然后进行锚杆的吊装,最后采用顶升螺杆完成锚杆的精确定位)。测量数据表明,采用现场组拼方式进行锚杆定位的精度完全满足设计要求。  相似文献   

4.
之江大桥拱形钢塔节段连接采用内侧栓接、外侧壁板焊接方式,钢塔节段焊接施工是钢塔施工的重心,节段焊接质量直接影响着钢塔的整体受力.主要介绍钢塔的焊接施工工艺、钢塔焊接前节段的定位控制、焊接残余应力的控制以及合龙段安装定位、超大焊缝焊接质量控制.  相似文献   

5.
泰州大桥三塔两跨悬索桥采用人字型钢中间塔匹配连续+弹性索支撑体系,为控制活载引起的桥面纵坡变化,即保证桥梁竖向刚度,对中间塔刚度范围、主缆和中间塔鞍座抗滑安全系数加以规定.基于交通调查建立了车辆的车重谱模型用于中间塔疲劳计算.在多塔悬索桥制造与安装关键技术方面,利用GPS RTK信息化监控系统动态监测与控制中塔深水沉井基础定位、下沉施工.为了保证钢中间塔安装精度,涉及钢塔节段制造及线形控制技术、钢塔节段吊装技术两方面,建立了中间塔制造、安装全过程累积误差管理系统,并将钢塔高强度厚板焊接及焊接变形控制、钢塔柱节段水平预拼装、塔柱大节段吊装精度控制等工艺技术纳入管理系统.  相似文献   

6.
南京长江三桥南塔施工技术   总被引:1,自引:0,他引:1  
周湘政  彭力军 《中外公路》2007,27(4):115-117
南京长江三桥索塔为钢-混凝土混合索塔,结构形式为国内首创,高塔施工影响因素多,安装技术复杂,精度控制难度大。特别是钢混结合段施工和钢塔安装施工技术为同类型桥梁施工提供了宝贵经验。  相似文献   

7.
钢塔节段间常见的连接方式有“金属接触+高强度螺栓”连接与焊接连接两种,不管塔段间采用哪种连接方式,确保钢塔柱的成桥线形非常重要。以塔段间“金属接触+高强螺栓”联合受力钢塔柱为例,详细介绍了该类钢塔柱的建造难点及确保塔柱线形的技术措施,可供相关人员参考。  相似文献   

8.
为研究斜拉桥钢桥塔端承压式钢-混凝土结合段的构造特点及传力机理,采用大型通用有限元分析软件ABAQUS建立了某斜拉桥钢-混结合段计算模型。分析了在正常使用阶段最不利荷载组合下,该桥钢-混结合段处的承压钢板、混凝土承台及钢塔中的应力分布情况。总结了斜拉桥钢桥塔承压式钢-混凝土结合段的传力特点。结果表明:采用该类构造形式的锚固区在正常使用阶段的最不利工况下,各部件均可满足现行公路桥规中的安全性与抗裂性要求;对于钢塔的钢-混结合段,可以通过有限元数值模拟的方式对其受力特性及传力机理进行研究,为设计提供数值参考;由于有限元软件会自动考虑部分塔身节段弹性压缩引起的预应力损失,因此在计算预应力损失时,采用了迭代计算方法剔除钢塔自重引起的预应力损失,并考虑其对结合面应力计算结果的影响;锚杆预应力的增大,将对混凝土承台产生不利影响,而对承压式钢-混凝土结合段及钢锚箱产生有利影响,且在弯矩较大的工况下,锚杆预应力的增大将对钢锚箱的受力产生有利影响,因此在选取锚杆预应力设计值时,要综合考虑其对各部件的影响。  相似文献   

9.
南京长江第五大桥主桥为(80+218+600+600+218+80)m组合梁斜拉桥,钢混组合塔主要由钢壳、钢筋和混凝土组成。双壁异形箱形钢壳壁板薄,焊接变形大,引入"附筋"理念,将钢筋加工和直螺纹套筒连接作为钢结构制造的一部分,增加了钢壳制造安装难度。针对BIM技术应用、1∶1木质模型检验和足尺模型试验中发现的问题,采用钢壳板单元制造、组拼精度控制、"1+1"立式预拼方式等技术,提高钢壳制造与安装质量。对比4种竖向钢筋连接技术方案,选用"带圆钢管槽钢+螺母定位与竖筋样板定位结合法",解决竖向钢筋直螺纹套筒连接难点。节段预拼装测量中采用多种有效检查方法,实现桥位的安装精度目标。  相似文献   

10.
巢马城际铁路马鞍山长江公铁大桥主航道桥为(112+392+2×1 120+392+112) m三塔钢桁梁斜拉桥,Z3号桥塔为超高多肢钢-混组合塔,高308 m。上塔柱钢结构高87.5 m,分13个吊装节段,最重505 t;中、下塔柱混凝土结构高217.5 m,分38个节段液压爬模施工;钢-混结合段高3 m,内部采用PBL键+剪力钉+高强度钢锚杆+高强度混凝土结构形式。在中塔柱设置钢管临时横撑控制塔柱线形及应力;下横梁采用落地支架法分层施工,与对应塔柱同步浇筑;钢-混结合段混凝土采用C60细石补偿收缩混凝土+高强度灌浆料,保证了混凝土施工质量;采用工厂“2+1”立体匹配制造、“提升站+运输栈桥”钢塔节段转运等技术,并研制15 000 t·m超大型塔吊,实现了钢塔柱大节段的制造、整体滩地运输和吊装;钢塔节段间采用栓焊组合连接形式,通过设置工艺隔板、双面坡口等措施控制了钢塔焊接变形;利用定位桁架临时锁定钢塔合龙段实现了钢塔的精确合龙,定位桁架受力及变形均满足要求。  相似文献   

11.
武汉杨泗港长江大桥主桥为主跨1 700 m的双层公路钢桁梁悬索桥,该桥重力式锚碇由地下连续墙、帽梁、内衬、锚碇混凝土组成,采用型钢锚固系统(由后锚梁和锚杆组成)。锚碇基坑开挖后进行锚碇混凝土及型钢锚固系统施工,锚碇混凝土竖向分14层(每层分3块)浇筑,后锚梁和锚杆在工厂内加工制造,分批次随锚碇混凝土分层安装,通过定位支架(由后端支架、中间支架、前端支架、连接杆组成)进行空间位置调整。在该桥型钢锚固系统施工中,通过设置具有足够强度、刚度及稳定性的宽翼缘型钢定位支架,减小了分层混凝土浇筑对已定位后锚梁及锚杆精度的影响;通过无棱镜空间定位法控制锚杆前端中心位置,确保了锚杆安装精度,提高了锚杆测量速度、效率及安全性;通过对构件进行及时限位,避免了施工振动造成的构件位置偏移,有效减少了重复调整次数;通过两次钻孔成孔工艺确保了精制螺栓成孔精度。该桥型钢锚固系统安装用时120 d,其锚杆纵向偏位在10 mm内、横向偏差在5 mm内、锚固点高程偏差在5 mm内,均满足设计要求。  相似文献   

12.
太原市机场路祥云桥桥塔设计   总被引:1,自引:0,他引:1  
太原市机场路祥云桥主桥为独塔混合梁斜拉桥,桥塔由3根塔柱组成,空间呈火炬造型,在桥面以上为钢塔柱,在桥面以下为混凝土结构.钢塔柱内部加劲肋按照半刚性加劲肋的原则设计;塔柱联结系采用刚接方案,3根塔柱之间设置20道空间水平联结系;在钢塔柱与混凝土塔柱间设置钢—混凝土结合段(高7.05 m),主要传力构件为PBL剪力键;塔顶钢塔帽将3根塔柱顶端固结,其下段为连接塔柱的重要受力构件,上段为装饰构造;斜拉索在中塔柱内采用双锚箱的方式锚固,在边塔柱内采用锚梁的方式锚固;斜拉索向塔柱圆弧外侧拉伸锚固;3根塔柱采用整体式基础方案,承台间设置系梁.  相似文献   

13.
南京浦仪公路西段跨江大桥主桥为主跨500 m的钢箱梁斜拉桥,采用钻孔桩基础,桥塔为大断面独柱形钢塔,通过高强拉杆与承台和塔座连接,主梁分左、右两幅布置。钻孔桩基础采取搭设钢平台的方式施工;钢塔采用大型浮吊和塔吊安装;钢箱梁采取边跨浮吊高支架存梁+中跨桥面吊机单悬臂拼装的方式施工;斜拉索安装采用塔端挂设、梁端压锚、梁端张拉的总体施工工艺。施工过程中,钻孔桩砂质泥岩钻进时,采取高焊齿滚刀钻头解决中风化砂质泥岩易糊钻问题;钻孔桩检测合格后,进行钻孔平台拆除和围堰安装;利用BIM技术对钢塔首节段定位进行模拟,通过足尺模型试验,选择水泥基灌浆料,采用立轴式搅拌机在高位搅拌进行塔底灌浆,确保灌浆密实度;中跨合龙采用无工艺拼接板自然温差合龙法,保证了安装精度和成桥线形。  相似文献   

14.
鄄城黄河公路特大桥波形钢腹板PC结合梁施工技术   总被引:1,自引:1,他引:0  
山东鄄城黄河大桥为主跨120 m的大跨径全连续波形钢腹板PC结合梁公路桥。综述该桥主要施工技术:采用支架法施工0号块;利用特制桁架安装定位首块波形钢腹板;通过标高、轴线及节段钢腹板变形控制桥梁线形;波形钢腹板悬臂节段采用桁车悬浇施工;波形钢腹板现场采用螺栓先临时固定后施焊的连接方法;钢-混凝土结合部位施工时应重点控制混凝土施工,同时设置横坡及安装止水带来防水。  相似文献   

15.
泰州长江大桥三塔悬索桥钢中塔设计   总被引:1,自引:0,他引:1  
泰州长江大桥为三塔悬索桥,综合考虑全桥结构刚度及中塔自身的受力要求,中塔设计采用了纵向人字形钢塔方案.介绍了人字形钢中塔的设计,包括钢塔的截面选择、节段划分及连接方式、塔底与承台的连接构造,以及中塔的主要计算结果.  相似文献   

16.
南京长江第五大桥主桥索塔采用钢-混凝土组合结构,是国内首次在大跨径桥梁结构中应用该结构。钢-混凝土组合结构在设计上有许多创新点,在实际施工过程中需要技术攻关。本文结合南京长江第五大桥南边塔首节段钢壳安装定位施工,对索塔的首节段的吊装、钢筋连接及混凝土浇筑关键技术进行阐述。  相似文献   

17.
《公路》2017,(11)
型钢锚固系统是悬索桥的关键部位,安装精度要求高。马普托大桥南锚锭型钢锚固系统安装定位采用了整体式定位钢支架、锚固梁安装与锚体混凝土交替施工、限位板及多向千斤顶进行锚固梁粗定位及精调整、锚固系统三维坐标计算方法及精度分析等施工技术,有效地控制了锚固梁的安装精度,取得了很好的施工效果。  相似文献   

18.
太原市摄乐大桥主桥为(30+2×150+30)m的空间交叉索面异型独塔斜拉桥,桥塔横桥向为"Λ"形,无横梁,高113.8m,下塔柱为钢筋混凝土结构,采用模板现浇施工,中、上塔柱为钢结构,采用大节段整体吊装施工。在该桥塔柱施工过程中,混凝土下塔柱锚固钢筋采用"劲性骨架+定位板"进行精确定位;在内倾式混凝土下塔柱两肢之间建立支撑桁架对塔柱进行支撑,空间曲面模板外侧横肋取直,与支撑桁架支撑面相适应;钢-混结合段采用定位支架进行精确定位,在支架顶部设置定位孔,在钢-混结合段底部设置变径销轴;钢塔在工厂分节段制造,现场组拼成大节段,利用D5200-240塔吊进行吊装,塔吊扶墙与塔柱第2道横撑采用一体化设计,以实现快速化施工。  相似文献   

19.
大岳高速洞庭湖大桥主缆锚固系统采用型钢构件,为连接主缆与锚碇的关键受力结构。锚固系统的精确定位安装不仅决定了悬索桥各阶段受力均匀合理,而且对主体工程耐久性影响重大。该文提出了一种型钢锚固系统支撑定位方法,使后锚梁、锚杆安装定位一次性完成,无需反复测量调整,并实现了定位支架安装、锚固系统安装、锚体混凝土浇筑同步进行,大幅提高了锚固系统的定位精度和施工效率。  相似文献   

20.
结合工程实践经验,对钢筋质量抽检中的钢筋连接、锚固、定位和保护层厚度的确定、钢筋下料长度等若干技术问题进行了说明,同时介绍了几种钢筋连接技术.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号