首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
By high particulate matter(PM) reduction performance, diesel particulate filter(DPF) is applied to almost all of modern HSDI diesel engine. PM emitted from diesel engine is consist of carbon based and non-carbon based material. Representative carbon based PM is soot. Non-carbon based PM is produced by wear of engine and exhaust component, combustion of lubrication oil and sulphur in fuel. Accumulation of non-carbon based PM affects pressure difference of DPF and thus accuracy of soot mass estimation in DPF can be lowered during normal and regeneration condition when the pressure difference caused by non-carbon based PM is not recognized correctly. Also unevenly accumulated PM inside of DPF can produce locally different exhaust gas temperature and thus it can lower accuracy of soot mass estimation during regeneration. This study focuses on estimation of soot oxidation rate not by conventional pressure difference but by exhaust gas analysis at up and downstream of DPF. Results, strong correlations between CO2 -fuel mass ratio and soot oxidation was observed.  相似文献   

2.
设计了一种车载全流式燃烧器,从增压柴油机的涡轮增压器取出新鲜空气,从回油管路取油供给燃烧;将该装置安装在排气管尾端使捕集器进行再生.在燃烧器和捕集器之间增加氧化催化器,实现了在发动机所有稳态工况下捕集器的复合再生.在排气背压的再生控制策略基础上,根据经验公式对背压值进行温度修正,将三维背压MAP简化为二维,提出"恒温定时"的复合再生控制策略,分析了控制策略在不同工况区域的运用,给出了再生过程分析实例.对既定的控制策略进行了实车试验,结果表明微粒排放达到了国Ⅳ标准.  相似文献   

3.
A system has been researched over the past 3 years for reducing the exhaust pollutants from diesel engines for light commercial vehicles. The system researched achieves Euro 6 standards for reduction of polluting gases (CO, HC, PM, NO). It consists of 4 main sections: 1. A heater and heat exchanger (HE); 2. A CO/HC oxidising catalyst (D°C); 3. Pt catalyst on a diesel particulate filter (DPF); 4. A NO reducing reaction (SCR) within the DPF. The system operates as follows. The exhaust gas contains oxidising gases, namely both O2 and NO2. The levels of CO and HC are oxidised by O2 to CO2 for temperatures above 200°C. Carbon (PM) is oxidised to CO2 by NO2 but requires a temperature above 250°C. The operating exhaust temperature of 300°C is ideal for the removal of NO by using the Pt catalyst and the CO generated within the DPF. The heater is required to be able to raise the exhaust temperature at any time to 300°C in order to optimise the performance of the system, since diesel engine exhaust temperatures vary between 160°C (slow speeds) to 350°C (high speeds). Considerable heat is required (??3 kW) to maintain the exhaust gas for a 2l engine at 300°C for engine idle conditions. Therefore a heat exchanger is required to re-circulate the input heat and thereby reduce the maximum power consumption to a maximum of 500W over the engine full operating test cycle. This energy is supplied by the engine battery and alternator. Experimental results have been obtained for the exhaust from a Kubota diesel engine and the reductions in exhaust emissions of 83% (CO/ HC), 58% (NOx) and 99% (PM) were obtained. The PM was continuously cleaned so that there was no build up of back pressure.  相似文献   

4.
氧化催化器(DOC)出口温度控制是实现颗粒捕集器(DPF)主动再生控制的关键。本文介绍一种基于神经网络的氧化催化器出口温度控制方法,首先结合DOC系统的实际特征以及DOC传热及化学反应特性建立了一阶延迟DOC出口温度模型,然后在温度模型基础上基于神经网络建立了DOC出口温度预测模型,最后将DOC出口温度预测值作为闭环反馈输入建立反馈控制器计算HC喷射量进而控制DOC出口温度。本方法采用整车试验中连续变化工况来验证,试验结果表明DOC出口温度在DPF再生过程中控制在600±20℃范围内,满足DPF精确再生控制要求。  相似文献   

5.
This study was conducted to examine the impact of aged and new DPF systems of the Euro 5 diesel passenger car on fuel efficiency and exhaust emissions. Test diesel vehicle used in this study was equipped with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) as aftertreatment systems, and satisfied the Euro-5 emissions standard. The displacement volume of engine was 1.6 L and the cumulative mileage was 167,068 km before the test. The FTP-75 test procedure was used, and the time resolved and weight based exhaust emissions of total hydrocarbon (THC), carbon monoxide (CO) and nitrogen oxides (NOx) were measured. The results show that the vehicle with the new DPF system has lower emissions of THC, CO and NOx than the aged one, and fuel efficiency also increased about 5 percent. The aged DPF system had higher backpressure due to the particulate matter (mostly in the form of ash) accumulated in the DPF. As was shown in the analysis using X-CT (X-ray computer tomography), the aged DPF system had particulate matter (PM) accumulated to a length of 46.6 mm. In addition, a component analysis of PM through XRF (X-ray fluorescence) analysis found that 50 % or more of the components consisted of the P, S, Ca, and Zn.  相似文献   

6.
In order to investigate the influence of initial regeneration temperatures on diesel particulate filter (DPF) regeneration, an experimental study of DPF regeneration was implemented using a dielectric barrier discharge (DBD) reactor, aided by exhaust waste heat after engine flameout. DPF trapping characteristics and carbon deposit mass were discussed to facilitate further data analysis and calculation. DPF regeneration was then investigated by comparison analysis of deposit removal mass, backpressure drop, and internal temperature change. The results revealed that a large amount of particulate matter (PM) was deposited in DPF with a high filtration efficiency of about 90 %. The deposit removal rate and percentage drop of the backpressure both maximized at the initial temperature of 100 °C. During DPF regeneration, the sharp rise of internal temperature indicated vigorous PM incineration and high CO2 emission. The results successfully demonstrated DPF regeneration using non-thermal plasma injection during engine flameout, and prominent heat durability was achieved in this method.  相似文献   

7.
柴油机从欧Ⅲ排放标准发展到欧Ⅳ排放标准需要增加排气后处理系统,对排气后处理系统的建模和仿真将是欧Ⅳ柴油机控制系统开发流程中的重要环节。介绍了排气后处理系统的发展状况,针对柴油机控制系统开发建立了排气后处理系统模型,包括氧化催化器和微粒过滤器两个模块,模型根据能量守恒和化学动力学原理建立。对后处理模型进行了硬件在环仿真,对微粒过滤器的再生策略进行了分析。  相似文献   

8.
柴油机微粒捕集器(DPF)能降低柴油机的微粒(PM)排放量,文章提出了DPF催化再生技术方案,将氧化催化器(DOC)与DPF相结合,通过DOC催化氧化未燃HC等来提高排气温度达到微粒着火温度500~600℃,点燃微粒从而完成再生过程。以YN4100QB–1A柴油机为研究对象,对不同喷油量下的DPF升温特性进行了试验研究,试验结果表明:当喷油量大于60mL/min时,再生系统能迅速将排气温度提高到500℃以上。可变喷油量的喷油控制方案可使DPF升温平缓,降低再生造成的二次污染。  相似文献   

9.
在氧化型催化转换器(DOC)前端的排气管中喷入柴油,通过提高柴油机尾气温度、燃烧并去除柴油机微粒捕集器(DPF)中的PM,实现了DPF再生。对整个再生过程中尾气成分进行分析和计算,发现碳氢化合物(HC)为主要二次污染物,且排放相对较大。通过试验方法,分别研究喷油流量和喷油时DOC前端排气温度对再生过程中HC排放的影响,并依此提出保温处理、分阶段喷油和低速再生等三项优化措施。优化后再生过程中HC排放降低了68%,且燃油经济性提高了21%。  相似文献   

10.
通过调研国内外文献,介绍了柴油机颗粒物污染现状、颗粒物后处理技术、壁流式颗粒捕集器(DPF)的工作原理、材料和结构类型、捕集器再生技术和控制策略等。堇青石陶瓷壁流式DPF具有成本和性能方面的优势,占据主要市场份额,再生技术是DPF应用的关键。与主动再生技术相比,被动再生具有结构简单、节约油耗等优势,可通过涂敷催化剂、前置DOC和辅助主动再生等方法确保再生效果。  相似文献   

11.
This study summarizes engine speed and load effects on HC species emissions from premixed charge compression ignition (PCI) and conventional diesel combustion, and it evaluates diesel oxidation catalyst (DOC) formulations on a gas flow reactor for the purpose of diesel particulate filter regeneration or lean NOx trap desulfation. HC emissions are sampled simultaneously by a Tedlar bag for light HC species and by a Tenax TA™ adsorption trap for semi-volatile HC species, and they are analyzed by gas chromatography with a flame ionization detector. The bulk temperature and residence time during combustion are key parameters that are important for understanding the effects of speed and load on engine-out HC emissions. The degree of post-flame oxidation is higher in PCI than in conventional combustion, and it is increased for PCI with a higher speed and load, as indicated by a lower fuel alkanes/THC ratio, a higher alkenes/fuel alkanes ratio, and a higher methane/THC ratio. Ethene and n-undecane are two representative HC species, and they are used as a surrogate mixture in the gas flow reactor to simulate PCI and conventional combustion with in-cylinder post fuel injection. Among the three DOC formulations tested, the catalyst with constituent precious metals of platinum and palladium (PtPd) showed the best light-off performance, followed by PtPd with an addition of cerium dioxide (PtPd+CeO2), and platinum (Pt), regardless of exhaust compositions. Conventional combustion exhaust composition shows a lower light-off temperature than that of PCI, regardless of catalyst formulation.  相似文献   

12.
In this study, the effect of hydrothermal aging over a commercial diesel oxidation catalyst (DOC) on deterioration in nitrogen dioxide (NO2) production activity has been experimentally investigated based on a micro-reactor DOC experiment. Through this experimental result, the NO2 to nitrogen oxides (NOx) ratio at DOC outlet has been mathematically expressed as a function of DOC temperature according to various aging conditions. The current study reveals that the catalyst aging temperature is a more dominant factor than the aging duration in terms of the decrease in NO2 production performance through DOC. The DOC sample hydrothermally aged for 25 h at 750 °C has displayed the lowest NO2 to NOx ratio compared to the samples aged for 25 ~ 100 h at 650 °C. Also, in this study, the impact of hydrothermal aging of a DOC on the selective catalytic reduction (SCR) efficiency in a ‘DOC + SCR’ aftertreatment system was predicted by using transient SCR simulations. To validate the SCR simulation, this study has conducted a dynamometer test of a non-road heavy-duty diesel engine with employing a commercial ‘DOC + SCR’ system on the exhaust line. The current study has quantitatively estimated the effect of the variation in NO2 to NOx ratio due to the hydrothermal aging of DOC on the NOx removal efficiency of SCR.  相似文献   

13.
以某型高压共轨柴油机为研究对象,研究试验样机加装DOC+DPF后处理装置对其颗粒排放特性的影响。结果表明:试验样机连接DOC+DPF后,颗粒物排放显著降低,在中高转速下,转化率平均在97%以上;在中低转速DOC+DPF对积聚态颗粒净化效率高于核模态颗粒,在1030rpm下,颗粒物总数量下降89%,总质量下降33%;在1200rpm下,颗粒物总数量下降96%,总质量下降77%。在1030rpm和1600rpm除了70%负荷外,DOC+DPF前的NO2/NOX比值都高于DOC+DPF后的,DOC+DPF后的NO2/NOX比值随负荷增加先减小后增加。  相似文献   

14.
在低、中、高3种转速及不同扭矩的工况下对重型柴油车进行了PM排放试验,对比了微粒氧化催化器(POC)+柴油机氧化催化剂(DOC)和POC+燃媒催化型燃油添加剂两种PM净化方案。试验研究表明,添加剂最佳添加质量分数为90×10-6,添加剂可替代DOC与POC联合净化PM,并得到较为理想的净化效果。  相似文献   

15.
柴油车微粒捕集器再生控制系统硬件设计   总被引:1,自引:0,他引:1  
控制系统在柴油车微粒捕集器再生过程中起着重要作用。采用“燃烧器+DOC+添加剂+DPF”的喷油助燃催化再生技术,设计了基于TMS320F2812单片机的再生控制系统硬件电路,分析了控制系统各硬件组成部分。实践证明,控制系统能够实现DPF可靠再生。  相似文献   

16.
The impact of small compression ignition (CI) engine operation conditions and fuel properties on diesel and biodiesel particulate matters (PMs) quantity using opacity smoke meter is investigated. The biodiesel engine’s PMs are around a half of diesel engine PMs under the same engine operation conditions. Morphology of both engine’s PMs are also studied using a Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and image processing method. The average primary nanoparticle sizes of diesel and biodiesel engine’s PMs are approximately 34 nm and 32 nm, respectively. The result shows that engine operation condition and fuel property are strongly impact on the quantity and size distribution of primary nanoparticles emission. PM oxidation kinetics on conventional cordierite Diesel Particulate Filters (DPFs) powders by Thermo-gravimetric analysis (TGA) is also successfully studied. The calculated apparent activation energies of biodiesel engine’s PM oxidation on conventional cordierite DPFs powders are lower than that of diesel engine’s PM and carbon black because of unburned oxygenated molecule. The calculated apparent activation energy of biodiesel engine’s PM and diesel engine’s PM oxidize on conventional cordierite DPFs powders with pure air are in the range of 109 ~ 131 kJ/mole and 117 ~ 130 kJ/mole, respectively. It might be expected that smaller primary nanoparticle size of biodiesel engine’s PMs and bio-oxygenate unburned hydrocarbon can promote more PM oxidation rate during vehicle’s DPF regeneration process.  相似文献   

17.
基于添加剂和电加热的柴油机DPF再生技术研究   总被引:2,自引:0,他引:2  
提出了基于添加剂和电加热的柴油机微粒捕集器再生技术,以柴油添加剂与电加热相结合的方式,利用柴油添加剂降低微粒起燃温度,再生时补充少许空气,只需少量的电能就可以点燃微粒,通过其自身火焰的蔓延来完成整个捕集器的再生。以SOFIM8140.27柴油机为对象,对微粒捕集及再生方案进行了大量试验研究,证实了该设计方案具有捕集效率高、再生可靠和车载实用等优点,能够适应我国的燃油品质。  相似文献   

18.
Particulate matter in diesel engine exhaust, particularly nano-particles, can cause serious human health problems including diseases such as lung cancer. Because diesel nano-particle issues are of global concern, regulations on particulate matter emissions specify that not only the weight of particulate matter emitted but also the concentration of nanoparticles must be controlled. This study aimed to determine the effects on nano-particle and PM emissions from a diesel engine when applying a urea-SCR system for NOx reduction. We found that PM weight increases by approximately 90% when urea is injected in ND-13 mode over the emission without urea injection. Additionally, PM weight increases as the NH3/NOx mole ratio is increased at 250 °C. In SEM scans of the collected PM, spherical particles were observed during urea injection, with sizes of approximately 200 nm to 1 μm. This study was designed to determine the conditions under which nano-particles and PM are formed in a urea-SCR system and to relate these conditions to particle size and shape via a quantitative analysis in ND-13 mode.  相似文献   

19.
以某4缸增压直喷柴油机为样机,利用专业试验台架,在优化喷油提前角和EGR阀开度的前提下,联合利用氧化催化器(DOC)及微粒氧化催化转化器(POC)技术对柴油机尾气排放进行了试验研究,并总结了DOC和POC技术对柴油机排放的影响规律.试验结果表明,通过优化喷油提前角及EGR阀开度,并且选择正确的DOC与POC的布置形式,...  相似文献   

20.
In recent years, particle number emissions rather than particulate mass emissions in automotive engines have become the subject with controversial discussions. Recent results from studies of health effects imply that it is possible that particulate mass does not properly correlate with the variety of health effects attributed to engine exhaust. The concern is now focusing on nano-sized particles emitted from I. C. engines. In this study, particulate mass and particle number concentration emitted from light-duty vehicles were investigated for a better understanding of the characteristics of the engine PM from different types of fuels, such as gasoline and diesel fuel. Engine nano-particle mass and size distributions of four test vehicles were measured by a condensation particle counter system, which is recommended by the particle measurement program in Europe (PMP), at the end of a dilution tunnel along a NEDC test mode on a chassis dynamometer. We found that particle number concentrations of diesel passenger vehicles with DPF system are lower than gasoline passenger vehicles, but PM mass has some similar values. However, in diesel vehicles with DPF system, PM mass and particle number concentrations were greatly influenced by PM regeneration. Particle emissions in light-duty vehicles emitted about 90% at the ECE15 cycle in NEDC test mode, regardless of vehicle fuel type. Particle emissions at the early cold condition of engine were highly emitted in the test mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号