首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文对悬浇预应力混凝土变截面连续箱梁桥的墩梁临时固结方式进行了探讨,对施工中的不平衡弯矩进行了量化分析,对不同的墩梁临时固结措施进行了分析并指出其优缺点。尤其对永久支座的自身变形、转动角及支座在墩梁临时固结中所发挥的作用提出了建议,供相关技术人员参考。  相似文献   

2.
墩梁临时固结体系是保证预应力混凝土连续梁悬臂施工稳定性的主要措施之一。基于铁路连续梁桥墩梁临时固结设计方案,采用数值计算方法,对墩梁临时固结体系倾覆稳定性和临时支座局部承压进行计算分析。结果表明,仅依靠梁体自重不能保证悬臂施工纵向倾覆稳定性,在临时支座设置一定数量的精轧螺纹钢后,能大大提高梁体纵向倾覆稳定;当临时支座设计尺寸受到限制时,尽可能增加临时支座的数量和提高混凝土标号,以增大临时支座的承压能力。  相似文献   

3.
我国目前在内河上建设的桥梁,多采用悬浇变截面预应力混凝土连续箱梁的形式。以石岐河特大桥施工为例,有针对性地提出了变截面预应力连续箱梁悬浇施工过程中的控制要点,着重对临时支撑固结进行了介绍。  相似文献   

4.
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面入手,介绍了S226海滨大桥主桥连续预应力混凝土变截面箱梁2#~7#块、8#、8'#块合拢段采用挂篮悬浇的施工方法。  相似文献   

5.
预应力混凝土连续箱梁桥悬臂施工过程中,为平衡悬臂施工不平衡荷载产生的力矩,确保结构的安全可靠,需要将墩梁临时固结。以苏丹西纳公路大桥为例,阐述悬臂施工过程中不平衡力矩的计算工况和方法,并介绍了临时固结的解除顺序。  相似文献   

6.
PC变截面连续箱梁悬臂施工临时支撑计算分析   总被引:1,自引:0,他引:1  
预应力混凝土连续箱梁悬臂施工过程中,为克服不平衡荷载的影响,确保结构的稳定、安全,需对墩梁实施临时固结.以天津永定新河特大桥为例,明确悬臂施工过程中不平衡力矩的计算工况和计算方法,介绍了合理有效的临时固结措施以及所选择固结方法的强度和稳定性验算.  相似文献   

7.
蔡文波  张铭  陈卉  廖原  张家元  岳磊 《世界桥梁》2013,41(1):5-8,25
武汉三官汉江公路大桥主桥为主跨190 m的双塔预应力混凝土部分斜拉桥,介绍该桥主桥设计与施工.主桥采用塔、墩、梁固结体系;主梁采用大悬臂变截面预应力混凝土连续箱梁;桥塔设计为古琴造型,采用独柱形四面镂空截面形式,索塔锚固采用单根可更换式锚固系统;斜拉索采用竖琴式中央索面布置;主墩采用实体双薄壁圆倒角矩形墩、钻孔灌注桩基础.主墩承台采用钢管桩围堰施工,墩身及塔柱采用爬模施工,主梁采用悬臂浇筑法施工.  相似文献   

8.
在预应力混凝土连续梁悬臂施工时,墩顶箱梁理论上宜完全对称浇筑,但实际施工中可能会出现不平衡荷载。在浇注悬臂浇筑连续箱梁时通常需要增加临时结构,来克服施工中不平衡荷载对梁体的不利影响,确保梁体结构的稳定、安全。以连续梁桥临时固结为例进行阐述,有关经验可供相关专业人员参考。  相似文献   

9.
肖军  李浩 《公路》2005,(3):105-108
蠡河大桥主桥跨越干线V级航道蠡河,上部结构为49.5m 90m 65.5m不对称变截面悬浇预应力混凝土连续箱梁。介绍了主桥的设计概况、主拉应力控制、合拢段设计、箱梁横断面设计及上部施工不平衡重对主墩的影响等几个重点问题。  相似文献   

10.
南沙大桥东涌互通主线二桥为一联五跨连续刚构桥,下穿、上跨多条既有线。该桥主梁采用节段悬臂浇筑工艺施工,其22至23号墩上跨既有C匝道,施工净空仅29 cm。为在不影响C匝道运营的前提下进行跨线施工,提出22至23号墩采用模架结构进行悬浇跨线施工。模架结构由钢壳和桁架两部分组成,其中,钢壳既作为施工阶段混凝土浇筑用模板,又作为混凝土箱梁结构的一部分,还兼做跨线施工防护棚。施工时,22号墩广州侧、23号墩东莞侧梁段采用挂篮进行节段悬浇施工;22号墩与23号墩间梁段采用模架结构进行节段悬浇施工,待跨中合龙段施工后,拆除墩身两侧的临时支撑、挂篮和桁架,完成跨线施工。  相似文献   

11.
《中外公路》2021,41(4):163-167
秀山大桥位于深水急流海峡区域,海况十分复杂,副通航孔桥上部结构为(81+4×153+81) m六跨连续-刚构变截面箱梁,桥梁位于超高变坡曲线段,施工采用预制节段悬臂拼装工艺。箱梁悬臂拼装施工悬拼吊机研制、墩旁支架设计、墩顶块安装固结及悬拼施工采取了一系列新工艺和创新技术,安全高效完成了施工任务,为复杂海域预制节段梁悬臂拼装施工积累了经验。该文介绍其施工关键技术。  相似文献   

12.
陶乐黄河公路大桥主桥上部结构采用60 m 5×90 m 60 m悬浇变截面预应力混凝土连续箱梁,下部结构为薄壁实体墩,结构受力复杂。介绍主桥结构设计与分析。  相似文献   

13.
孙军  岳真宏 《公路》2021,(2):156-160
为分析曲线钢箱梁桥施工过程中的抗倾覆稳定性,建立单箱梁和有临时加固设施的双箱梁数值模型,计算各支座的支撑反力。根据钢箱梁的不同受力特征,采用稳定系数法和支座反力法,计算曲线钢箱梁的抗倾覆稳定性系数。分析表明,对于结构整体倾覆分析而言,单箱梁和有临时加固设施的双箱梁的自重作用提供了结构的稳定力矩,使得在施工各工况下均不出现支座脱空的现象;单箱梁和有临时加固设施的曲线钢箱梁整体抗倾覆稳定性较好,各个阶段的抗倾覆系数均远大于规范的规定,桥梁结构不会发生侧向倾覆;双箱梁间设置临时加固设施,可以提高曲线钢箱梁的抗倾覆稳定性,在施工过程中,应加强双纵梁间的临时连接。  相似文献   

14.
马水河特大桥为(116+116)m的大跨度T形刚构桥。主梁采用变截面预应力混凝土箱梁,单箱单室直腹板,箱梁顶宽10.7 m,梁底缘按圆弧变化。主墩高108 m,墩身采用矩形空心高墩,墩顶不设实体段,与梁部按空间框架形式相接,桩基采用24-2.5 m钢筋混凝土钻孔桩,混凝土强度等级为C30,在墩底设置7.5 m高的导流堤。分别采用BSAS和ANSYS对全桥进行结构静力计算及空间静力和动力分析。分析结果表明:该桥静力、抗风、抗震、车桥动力响应验算结果均满足规范要求。该桥主墩墩身采用后倾式悬臂模板法施工,主梁采用对称悬臂浇筑法施工。  相似文献   

15.
从0号块支架、永久支座安装、临时支座混凝土施工、防落梁安装、支架预压施工、模板安装、钢筋及预应力筋安装、0号块混凝土浇筑、0号块混凝土浇筑时的监控、0号块箱梁预应力张拉和压梁等方面阐述了悬臂现浇变截面连续梁墩顶0号块的施工方法。0号块现浇施工是整个悬臂挂篮施工的首要条件,可为相关类似工程提供参考借鉴。  相似文献   

16.
配合梅溪湖国际文化艺术中心的总体景观设计,雷锋西大道梅溪湖大桥主桥采用复合曲线变高度连续刚构,主墩净高仅8 m,属矮墩连续刚构;同时,箱梁腹板侧面设置大倒角.文中简要介绍大桥矮墩连续刚构所采取的墩身构造、预顶推梁体、墩身设竖向预应力技术,以及箱梁腹板大倒角所采取的箱梁设置U型无粘结预应力等技术措施.  相似文献   

17.
依托某独柱墩连续箱梁桥,运用MIDAS/Civil建立桥梁仿真模型,研究不同支承距离和支承方式下独柱墩箱梁桥的抗倾覆稳定性变化规律。结果表明,独柱墩箱梁桥抗倾覆稳定性系数随着支承间距的增大逐渐增大,在确保桥梁合理设计的前提下,适当增大支承间距有助于提升桥梁的抗倾覆性能;不同支承方式下独柱墩箱梁桥的抗倾覆稳定性依次为梁墩固结双支座间距2.35m(原结构)双支座间距1.5m单支座,选用中墩双支座支承方式不仅能提升独柱墩箱梁桥梁体抗倾覆性能,还能减小单个支座的轴向承载。  相似文献   

18.
呼准铁路黄河特大桥主桥为(98+5×168+98)m预应力混凝土刚构—连续组合箱梁桥.主梁采用C55混凝土单箱单室变截面箱梁,三向预应力体系,在箱梁内预留体外预应力钢束张拉构件.主墩均采用圆端形截面空心墩(中间2个桥墩与主梁固结),摩擦桩基础.为适应主梁较大的温度伸缩量,开发了大位移伸缩装置及大位移活动支座.采用MIDAS Civil软件对该桥进行静、动力分析,分析结果表明,该桥在施工及运营阶段的刚度、强度均满足规范要求,且具有良好的抗震性能.该桥采用悬臂浇筑法施工,主梁合龙顺序为先边跨后中跨.  相似文献   

19.
大跨径变截面现浇箱梁通常使用挂蓝悬浇,分段浇注,分段张拉,而文章所述工程中桥梁上部结构形式虽为变截面现浇连续箱梁,但设计为通长钢绞线,只能以整体现浇方法施工。由于底模高度变化,浇注时混凝土侧压力作用下将在梁高变化处对底模产生较大的水平推力,若不采取有效措施加以克服,模板体系将有可能产生较大的水平位移,进而导致严重质量及安全事故。文章通过在建工程实际,简要介绍支架水平推力的克服方法。  相似文献   

20.
为研究PC连续箱梁桥0号块建模参数对其受力性能的影响程度,以选取合理的建模参数,以某跨度为(55+90+90+55)m的PC连续箱梁桥为工程背景,建立0号块空间有限元模型,分析不同桥墩高度、预应力筋沿程预应力损失、支座约束等参数下0号块受力性能的变化规律,以及最大悬臂施工阶段和成桥阶段0号块的空间应力特点。分析结果表明:0号块箱梁底板与支座相交位置应力受墩高影响明显,建模时应考虑桥墩的影响,墩高可按1倍梁高左右简化处理;沿程预应力损失分布对0号块受力影响明显,计算时应考虑其影响;运营使用阶段如不考虑支座约束,0号块局部应力失真,应力计算时可采用固结约束代替真实支座进行简化处理;0号块在横隔板等截面突变位置主拉应力较大,应优化构造尺寸和配筋,以及加强施工质量控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号