首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
疲劳开裂是正交异性钢桥面板常遭遇的病害之一,而其与桥面铺装刚度较大使得关键细节应力幅过大密切相关,因此,利用UHPC提升桥面铺装刚度是缓解疲劳应力的重要手段.为研究实际车流作用下的关键细节的疲劳性能,以跨沿洛河某公路斜拉桥为例,开展了钢-UHPC组合铺装正交异性钢桥面板构造细节的应力影响面分析,并利用监测记录的实际车流...  相似文献   

2.
为了验证桥面铺装改造对正交异性钢桥面板的加固效果,以某公路简支钢箱梁为背景进行研究。选取3跨箱梁,分别采用聚合物混凝土、夹心钢板系统和活性粉末混凝土3种桥面铺装方案对钢桥面板进行加固,并通过实桥试验测试改造前、后正交异性钢桥面板的应力及局部变形,验证加固效果。结果表明:原铺装与裸面板状态下钢桥面板的受力及变形规律基本一致,原铺装基本不参与正交异性钢桥面板共同受力;3种铺装改造后,钢桥面板应力及局部变形均有较大降低,但钢桥面板应力及变形的改善效果仍面临长期运营的检验。  相似文献   

3.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

4.
许航  鲍力  刘旭锴  谢增奎 《公路》2024,(1):124-133
采用有限元计算方法,对某大桥钢桥面铺装在采用钢-UHPC超轻型组合梁优化前后的钢箱梁节段正交异性钢桥面板的主要连接接头进行了分析,研究了在轮轴荷载作用下主要疲劳裂纹的控制应力的分布特征及应力影响面,建立了较全面的荷载作用与应力效应的对应关系,并由此推算出实桥在设计疲劳荷载作用下的应力历程及相应的应力谱。针对设计疲劳寿命周期内的正交异性钢桥面板的各构造细节,根据Miner疲劳损伤累积理论计算出相应的疲劳累积损伤,并对其疲劳寿命进行评估。采用普通钢桥面铺装时,靠近顶板与U肋、U肋与横隔板连接处的主要疲劳裂纹,其疲劳累积损伤度在设计使用寿命周期内均大于1,存在较高的疲劳开裂风险。经钢-UHPC超轻量组合桥面板设计优化后,顶板与U肋连接处抗疲劳性能改善效果显著,在大桥设计寿命周期内可满足抗疲劳设计的使用要求;但设计优化对横隔板-U肋-顶板连接处的抗疲劳性能影响有限,在设计使用寿命周期内,疲劳裂纹C.5、C.6、C.6.1、C.7仍存在较高的开裂风险,需引起重视。  相似文献   

5.
该文以开口加劲肋正交异性钢桥面铺装体系作为研究对象,建立了包括桥面板和铺装的整体三维有限元分析模型,研究了荷载作用下铺装层的力学特性.分析表明,横向拉应力是开口加劲肋正交异性钢桥面铺装设计的一个重要控制指标;开口加劲肋正交异性钢桥面铺装层问剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料;开口加劲肋正交异性钢桥面铺装对车辆荷载的应力应变响应具有很强的局部效应.  相似文献   

6.
钢-UHPC组合桥面移动车辆加载试验研究   总被引:1,自引:0,他引:1  
随着公路交通运输的发展,车辆荷载不断提高,导致钢桥面板疲劳问题日益突出,尤其是对桥面系安全使用危害很大的顶板疲劳开裂问题。采用超高性能混凝土(UHPC)形成钢-UHPC组合桥面,因有望解决该类疲劳问题而成为近年来的研究热点。以武汉军山大桥改造工程为背景,利用工程现场的运输卡车,开展了钢-UHPC组合桥面移动车辆加载试验研究。试验结果表明:顶板与U肋连接处疲劳细节控制测点应力幅约为改造前的1/4~1/10,U肋与横隔板连接处疲劳细节DPS01.1控制测点应力幅约为改造前的1/10;疲劳细节C.6多轴疲劳效应显著,疲劳细节C.6.1控制测点应力幅约改造前的26%~29%;其余疲劳细节控制测点应力幅普遍约为改造前的1/2,U肋嵌补段疲劳细节UU01控制测点应力幅约为改造前的1/2。若大桥原钢桥面板抗疲劳设计寿命按5年计,则改造后有望解决其顶板疲劳开裂问题。  相似文献   

7.
某桥主梁采用正交异性钢桥面板结构,为研究在轮载作用下,该桥正交异性钢桥面板受力和抗疲劳性能是否满足要求,建立该桥正交异性钢桥面板局部模型,计算轮载作用下其挠度、曲率半径和应力,并结合规范估算构造细节的疲劳强度。结果表明,在轮载作用下,桥面板主要变形区域较小,最大肋间相对挠度为0.28mm,满足限值要求,但最小曲率半径不满足规范规定;在纵向U肋、横隔板与桥面板连接处局部出现较明显的应力集中现象,且横向正应力普遍大于纵向正应力,但应力未超过限值;疲劳寿命最小的连接细节为纵肋与横梁的连接部位和横梁腹板开孔部位,应力幅值分别达77.4 MPa和127.9MPa,疲劳寿命分别为1.8×106和3.4×105次,远小于规范要求;该桥需要通过改变构造以及设计合理的桥面铺装来改善结构受力情况。  相似文献   

8.
为获得钢-UHPC组合铺装正交异性桥面板构造细节轮载作用下的响应特征,准确评价随机车流下其疲劳敏感构造细节的疲劳性能,以佛陈扩建西幅桥为例,开展了钢-UHPC组合铺装正交异性钢桥面板全部构造细节的应力监测试验。利用7d连续记录的应力时程和雨流计数法获得了构造细节的应力谱;基于Miner疲劳损伤等效原则计算得到了最大应力幅、等效应力幅及疲劳加载次数。结果表明:当构造细节位于轮载正下方时,通行货车每个车轴将在面板上的构造细节中产生1个应力循环,但其他构造细节只能由每个轴组产生1个应力循环;钢-UHPC组合铺装虽并未改变正交异性钢桥面板构造细节轮载作用下明显的局部效应特征,但增大了正交异性钢桥面板的刚度,使得横隔板弧形切口的面外应力减小;其显著降低了面板上构造细节的应力幅,使得纵肋-面板焊缝构造细节和面板对接焊缝构造细节所记录到的最大应力幅均小于常幅疲劳极限;基于AASHTO规范开展的疲劳评价表明,在当前交通流下,佛陈扩建西幅桥钢-UHPC组合铺装正交异性钢桥面板全部构造细节具有足够的疲劳强度。  相似文献   

9.
为研究铺装层对正交异性钢桥面板疲劳性能的影响,以港珠澳大桥标准联边跨跨中为背景,选择3类典型正交异性钢桥面板疲劳细节,考虑铺装层与钢桥面顶板的层间结合状态,铺装层的厚度、弹性模量、组成成分,建立该桥正交异性钢桥面板有限元模型,分析铺装层各因素变化下3类疲劳细节的应力幅变化;通过分析铺装层轮载扩散效应的扩散角对各疲劳细节应力幅的影响,提出合理扩散角,以此来考虑铺装层对钢桥面板的作用。研究结果表明,铺装层与钢桥面板间接触状态对正交异性钢桥面疲劳性能的影响较小;铺装层各参数对正交异性钢桥面板的疲劳性能影响较大;当进行钢桥面板抗疲劳设计时,可取轮载扩散角≤30°或采用BS5400所推荐的26.5°,或者偏安全地忽略铺装作用效应,以简化分析过程。  相似文献   

10.
为评估钢-超高性能混凝土(UHPC)组合桥面体系(通过剪力钉将配筋UHPC薄层与正交异性钢桥面板组合而成的新型桥面结构)的实桥应用效果,以太原摄乐大桥为背景,分别建立80 mm厚SMA铺装层、60 mm厚UHPC+80 mm厚SMA铺装层2种铺装方案有限元模型进行静力性能分析,并对桥面行车道开展静、动载试验研究。结果表明:设置UHPC铺装层能显著提高结构刚度,大幅降低正交异性钢桥面板各构造细节应力;实桥静载测试数据与计算值吻合度较高;当车辆以60 km/h设计速度行驶时,钢-UHPC组合桥面无明显动力冲击效应;钢-UHPC组合桥面体系在实桥上应用效果良好。  相似文献   

11.
某跨江大桥为主跨460m的斜拉桥,运营多年后正交异性板钢箱梁出现大量裂纹,提出采用超高性能混凝土(UHPC)组合桥面(由配钢筋网的UHPC层与钢桥面板通过短栓钉组合而成)进行改造。为选择合适的改造方案,采用有限元法建立原钢箱梁和UHPC组合桥面钢箱梁(UHPC层厚4.5,5.5,6.0cm)模型,分析各疲劳细节应力及UHPC层应力;开展UHPC层配置钢板条的组合结构模型试验,验证其疲劳性能。结果表明:UHPC组合桥面降低了钢箱梁各疲劳细节最大应力幅,降幅为11%~88%,顶板疲劳细节处裂纹尖端最大应力幅降幅达92%;疲劳荷载作用下,UHPC层顶面应力较低,钢桥面板开裂后UHPC层底面应力较大;采用钢板条对5.5cm厚UHPC层的组合结构加强后,UHPC层名义开裂应力达43.2MPa,200万次疲劳寿命达22.1MPa,疲劳性能满足要求,选择该方案进行改造。  相似文献   

12.
正交异性钢板-薄层RPC组合桥面基本性能研究   总被引:6,自引:1,他引:5  
为了解决正交异性钢桥面铺装层破损及钢桥面结构疲劳开裂2类病害问题,提出了一种新型正交异性钢板-薄层超高性能活性粉末混凝土(RPC)组合桥面结构体系。基于某大桥建立有限元模型,并对比计算了纯钢梁和组合桥面结构中桥梁主缆索力和桥面系应力状态;同时,开展了足尺条带模型静载试验。研究结果表明:采用新型钢-RPC组合桥面结构后,钢面板及纵肋中应力明显降低且最大降幅超过70%,而主缆索力几乎不增加;RPC层开裂前的拉应力可达42.7MPa,远高于其在实桥荷载作用下10.08MPa的拉应力;该新型钢-RPC组合桥面结构可提高桥面系的刚度,降低钢桥面结构中的应力,从而能够基本消除钢桥面疲劳开裂的风险。  相似文献   

13.
首先建立了正交异性钢桥面系三维断裂力学有限元模型,计算并对比了开裂铺装层与完好铺装层表面最大拉应变值,结果发现铺装层开裂后会使表面拉应变值减小,表明铺装层表面最大拉应变不适合作为带裂缝铺装层的设计指标,因为铺装层的疲劳破坏是由裂缝前沿的奇异应力场强度,即应力强度因子的大小所决定;接着计算了铺装层表面纵向裂缝和横向裂缝的应力强度因子值,分析了应力强度因子随荷载作用位置变化的规律,确定了轴载作用的最不利荷位。  相似文献   

14.
铁路桥钢桥面铺装主要作用是保护钢桥面免受道砟的磨损与雨水的侵蚀,为提高铁路钢桥面铺装的使用寿命,减少中期维修,对铁路钢桥面超高性能混凝土(UHPC)组合桥面铺装体系进行研究。以沪通长江大桥主航道桥为背景工程,制作带UHPC铺装层的正交异性钢桥面板单U肋梁模型进行抗水渗性能试验,并结合实桥进行UHPC组合桥面铺装体系设计和施工工艺研究。结果表明:UHPC组合桥面体系在无裂缝时抗渗性能满足使用要求,可有效保护钢板免受雨水侵蚀,带裂缝的组合桥面,运营过程中裂缝会逐渐闭合,阻止雨水进一步渗透,具有较强的抗渗能力储备;为避免新浇混凝土开裂,UHPC应严格按规范流程施工,施工温度宜选择15~25℃,浇筑后应及时覆膜保湿养护。  相似文献   

15.
郝聪龙  周尚猛 《交通科技》2021,(2):25-27,45
针对铁路桥梁超高性能混凝土桥面铺装层的受力特点,结合某连续钢桁梁特大桥工程,采用有限元软件建立力学分析模型。通过对桥面铺装层最不利荷载位置进行分析,研究桥面铺装结构的纵、横向应力及疲劳应力,发现超高性能混凝土铺装层能够有效改善正交异性钢桥面板的应力状态,确定了超高性能混凝土铺装层设计的力学控制指标。  相似文献   

16.
正交异性钢桥面板第一体系受力状态对铺装层的影响   总被引:2,自引:0,他引:2  
针对不同桥型主梁上正交异性钢桥面铺装层破坏的差异,采用预应力模拟正交异性钢桥面板的第一体系应力,用有限元方法计算作用有不同预应力水平的局部正交异性钢桥面系在标准轴载作用下的力学响应。得到了局部桥面系铺装层的各控制指标值分别随预应力水平的变化关系。结果表明,第一体系纵向正应力对铺装层表面最大纵向拉应变影响显著,第一体系横向正应力对铺装层表面最大横向拉应变影响较大,而第一体系应力状态对最大肋间相对挠度的影响很小、对层间最大剪应力基本没影响。  相似文献   

17.
正交异性钢桥面板疲劳问题突出,纵肋与顶板焊缝处是其关键疲劳易损部位,研究该部位疲劳裂纹的扩展过程并确定关键影响因素及其效应,有助于深刻理解其疲劳损伤机理。建立正交异性钢桥面板疲劳试验节段模型的有限元分析模型,将纵肋与顶板焊缝焊根处的疲劳裂纹近似为半椭圆形裂纹,基于断裂力学实现其扩展全过程的三维数值模拟。在此基础上研究初始裂纹的纵向位置和初始裂纹形状对疲劳裂纹扩展过程的影响,阐明扩展过程中的疲劳裂纹的形状变化,以及疲劳裂纹关键部位应力强度因子幅值的变化规律。研究表明:对于典型的正交异性钢桥面板纵肋与顶板焊缝,在纵向一段范围内,初始裂纹的纵向位置对裂纹扩展的影响不大;初始裂纹形状对裂纹扩展的影响主要体现在裂纹扩展的初始阶段,经过一段时间的扩展之后,不同形状的初始裂纹将演变为相对稳定的形状;持续一段时间后,裂纹将逐渐变得较为扁长;疲劳裂纹在深度方向上扩展超过约顶板厚度一半时,最深点的扩展速率将会减慢;深度相同的裂纹,形状越扁长时越倾向于向深度方向扩展,越不扁长时越倾向于向长度方向扩展。  相似文献   

18.
黄权锋 《城市道桥与防洪》2021,(5):102-103,138
目前国内大多数钢箱梁结构的柔性铺装在使用过程中均出现了铺装层开裂、脱粘、车辙、坑槽等病害,且正交异性钢桥面出现了包括纵肋-面板连接处疲劳开裂、纵肋-横隔板连接处疲劳开裂、横隔板弧形切口处疲劳开裂、纵肋拼接焊缝处疲劳开裂等病害.为避免这些病害情况的产生,采用了钢-超高韧性混凝土(STC)轻型组合桥面铺装型式.  相似文献   

19.
采用模型试验及空间有限元计算分析方法研究聚氨酯-钢板夹层结构正交异性三跨连续桥面板的力学特性,并对比了不同桥面板车轮作用点处,截面受局部应力影响的纵横向应力分布。结果表明:与普通正交异性钢桥面板相比,夹层桥面板能大幅降低局部应力集中,应力峰值约为普通正交异性钢桥面板的1/3~1/2,并可大幅减少焊缝疲劳裂纹的出现;由于夹层板自身刚度大幅提高,能大幅减少纵向加劲肋数量并减少50%以上的焊缝,从而节省钢材,减轻自重;聚氨酯-钢板夹层结构正交异性桥面板的应变试验测试值与有限元计算值基本吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号