首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
中国是海洋大国,同时也是海洋军事强国。舰载无人机在未来海洋战争中具有不可替代的作用,它可以实现对舰船的火力支援、远程侦察、中继通信、反潜作战、超视距作战等功能,并且没有人员伤亡,成本低。舰载无人机回收是当前世界各国研究的热点。本文提出一种基于惯性导航的舰载无人机回收电子系统设计,对惯性导航的原理进行介绍,并分析了系统的整体架构,使用TMS320F2407作为核心处理器,能够对陀螺仪和加速度计信号进行处理,并能接收无线控制信号,重点对陀螺仪信号的采集及滤波处理过程进行研究。  相似文献   

2.
为了提高船舶设备的使用质量,延长船舶设备使用寿命,有必要对船舶设备的信号采集、分析和处理过程进行系统研究。船舶设备信号包括电路信号、模拟量信号、声音信号和振动信号等,本文研究的对象是船舶设备的振动信号和噪声信号采集和分析,主要是因为这2种信号与船舶设备的运行状态息息相关,可以快速反映船舶设备的运行工况。本文介绍了基于单片机的船舶设备信号采集系统的基本框架,设计了船舶设备信号采集与处理系统的硬件电路和软件流程,对改善船舶设备的信号采集与分析能力,提高船舶设备故障诊断与监控水平有一定的作用。  相似文献   

3.
《舰船科学技术》2014,(12):132-135
使用陀螺仪的惯性导航系统具有非常高的精度,但是成本非常高昂,无陀螺捷联惯性导航系统通过对多个加速度计的数值进行解算也可以实现导航的目的,同时成本远低于使用陀螺仪的惯性导航系统。本文提出了一种基于Nios II的导航计算系统设计,通过将9个加速度计直接安装在载体上,然后通过FPGA进行计算,最终实现导航的目的,系统具有准确性高、成本低等优点。  相似文献   

4.
出于对船舶实时运动姿态获取的需要,船舶运动状态监测的研究越来越受到人们的重视.本文采用捷联惯性导航系统(SINS)对船舶运动状态进行监测,并通过3种SINS模型的对比分析,提出了一种改进的SINS模型,此模型增加一个测定角速度方向的陀螺仪.本改进模型使得捷联系统方程组可以进行线性求解,解决了捷联系统方程组必须进行非线性求解的问题.并用Matlab对船舶运动状态的求解进行了仿真,证明了此系统的可行性.  相似文献   

5.
基于单片机的船舶设备信号采集及处理系统   总被引:2,自引:1,他引:1  
为提高船舶的自动化程度,适应现代船舶设备发展的要求,以单片机ATA9C52为核心器件设计船舶设备信号的采集及处理系统。本系统可采集多种信号,经单片机处理,输出符合NMEA-0183标准的数据。它具有电路结构简单、可靠性好、使用方便等优点。  相似文献   

6.
首先建立惯性导航系统中的速度误差、位置误差、陀螺仪误差模型,然后与现实相联系研究带偏移量的卡尔曼滤波,同时对偏移量进行估计,最后通过实验验证卡尔曼滤波对航向、陀螺仪误差等的修正,极大地提高了水下惯性导航系统的结算能力和准确性。  相似文献   

7.
电路短路类型多样复杂,当前方法的电路短路识别错误概率高,为降低电路短路识别的错误概率,设计了基于数据挖掘的船舶电力电路短路识别方法。首先采用传感器采集船舶电力电路工作状态信号,并采用小波包对船舶电力电路工作状态信号进行多层分解,提取相应的小波包能量熵,将其作为船舶电力电路短路识别的特征,然后采用数据挖掘技术对特征向量和船舶电力电路短路类型间的变化关系进行建模,设计船舶电力电路短路识别模型,最后在Matlab 2017平台进行了船舶电力电路短路识别实验,本文船舶电力电路短路识别正确率超过95%,而对比方法的船舶电力电路短路识别率低于90%,本文方法不仅大幅度降低电路短路识别的错误概率,而且船舶电力电路短路识别效率更高,能够用于实际的船舶电力系统管理。  相似文献   

8.
目前惯导系统在航海、航空、导弹和宇航事业中得到了广泛应用,陀螺仪的精确度和稳定性直接决定惯性导航系统质量的好坏.阐述了陀螺平台的工作原理;对时频分析识别信号信息的方法进行了研究;给出了基于时频分析的陀螺工作状态的识别全过程.  相似文献   

9.
船舶电站自动化是未来船舶发展的一个重要方向,自动调频调载功能是船舶电站自动化一个重要的功能。本文对船舶电站的自动调频调系统的设计和实现进行研究,对调频调载的原理、实现方法、硬件电路和软件流程进行了设计。系统采用DSP作为控制器,通过传感器采集船舶电站系统的电压、电流和频率等实时数据,DSP根据功率偏差和频率偏差的综合信号,对调速器发出相应的调节信号,使其进行加速或减速,完成对船舶电站的自动调频和调载功能。  相似文献   

10.
针对传统的船舶姿态测量信号采集系统存在的采集精度低、信号响应时间长等缺点,提出船舶姿态测量信号采集系统设计。首先,通过信号感应模块、信号转换模块和信号汇总模块,对信号采集系统的总体框架进行设计;然后,根据总体框架,通过加速度传感器、倾斜角传感器、变压器、电压/电流转换器和RDC芯片等完成系统的硬件设计,通过对倾斜角的正弦信号和余弦信号转换,对加速度进行电压/电流信号转换,实现船舶姿态测量信号采集系统的软件设计,至此完成船舶姿态测量信号采集系统设计。实验结果表明,与传统的船舶姿态测量信号采集系统相比,提出的船舶姿态测量信号采集系统的采集精度更高,其采集误差可减少2.4°,对信号的响应时间可减少350 ms左右。  相似文献   

11.
船舶组合导航系统中包含了多种导通装置,以保障船舶在复杂环境下的航行安全,而常见的有基于惯性导航的多普勒雷达系统(DVL),该系统具有一定的冗余特性,能够显著提高船舶导航的精确度。本文建立船舶组合导航姿态控制系统的数学模型,得到该模型的误差量,介绍硬件设计流程,对导航数据的处理过程进行研究,最后根据组合导航系统的要求,实现DVL惯性导航系统的功能。  相似文献   

12.
为了优化船舶电力推进监控系统,对工业以太网在船舶电力推进监控系统中的应用展开研究。利用采集船舶电力推进设备信号,设计控制执行程序,完成基于工业以太网的船舶电力推进系统信号处理。在此基础上,连接变频装置,借助监控电路对异步电动机进行实时调试,完成船舶电力推进监控系统的搭建。实验结果表明,与集散型电力推进监控系统相比,基于工业以太网的监控系统可对船舶电力进行及时协调与调度,体现出了工业以太网在船舶电力推进监控系统中的应用价值。  相似文献   

13.
航姿测量系统可以采集船舶的航向、方位、水平姿态等信息,对船舶导航、舰载飞行器着舰、导弹引导等有重要的作用。传统的船舶航姿测量采用陀螺仪等传感器件,通过采集船舶的角速度得到姿态角,该测量方式的动态特性好,但存在成本高、集成度低、自动化程度低等问题。随着嵌入式芯片和微机系统的发展,基于嵌入式处理器的船舶航姿测量系统被开发出来,该类型的航姿测量系统具有精度高、功耗小和自动化程度高的优点,应用越来越广泛。本文基于嵌入式芯片,设计和开发了基于微机电系统的船舶航姿测量系统,并对该系统的结构组成和工作原理进行介绍。  相似文献   

14.
以往大部分数据采集系统利用CPLD采集船舶航行信号的方法存在效率不高问题。针对上述问题,设计一个高效率的船舶航行信号数据多通道并行采集系统。FPGA相关电路和DSP芯片构成系统硬件框架,设计FPGA处理模块、DSP控制模块以及接口模块,实现数据采集工作。并进行对比实验,实验结果表明:该系统在运行效率方面要优于传统采集系统,效率明显提高20%。  相似文献   

15.
在船载导航系统中,陀螺仪的作用很大,尤其是在强磁场干扰时,陀螺仪性能的好坏直接决定了船舶航行的安全性,因此在设计船舶导航系统时,需要对陀螺仪的可靠性进行试验。本文通过采用有限元模型,对陀螺仪的力学作用方式和工作原理进行研究,通过对组成系统进行抽象化的仿真,得到在一些情况下的陀螺仪作用力的时域和频域响应特性曲线。通过对加速应力的模拟和筛选,得到最佳的陀螺仪作用力模型,从而为其性能的提升提供理论指导。  相似文献   

16.
随着航运业的发展,对船舶操纵性能的要求日益提高,需要对船舶航向控制问题进行进一步研究。提出基于物联网的嵌入式船舶航向控制系统的设计方法。所设计系统由两部分组成,分别为硬件部分和软件部分。硬件主要由芯片、无线通信模块、电源模块、显示模块、温度采集电路、信扫描电路、复位电路、声光报警电路和负载控制电路构成,重点阐述了对各个硬件部分的设计电路。根据控制信号判断的方法对软件部分进行设计,完成物联网下嵌入式船舶航向控制系统的设计。为了验证所提设计方法的有效性,进行仿真实验,根据实验结果可以得出该系统能够对船舶航向进行实时控制,抗干扰能力强,效果令人满意。  相似文献   

17.
动力调谐陀螺仪在舰船导航中仍占较大比重。为了测试动力调谐陀螺仪的性能,采用DSP设计了一套漂移数据采集与补偿的实验系统。可采用不同的数学模型算法在DSP中对数据进行实时运算,输出相应的控制信号对陀螺仪进行实时补偿。该系统既适用于陀螺仪漂移数据的采集,也可应用于对不同数学模型进行实时补偿的效果进行对比研究。  相似文献   

18.
船舶惯性导航技术应用与展望   总被引:1,自引:1,他引:0  
以惯性导航技术的发展历程为基础,结合相关文献资料,简述了各类惯性导航器件的工作原理,综合阐述了国内外船舶惯性导航技术的发展水平和应用概况,并对国内外发展应用情况进行了比较分析,对未来船舶惯性导航技术及其系统技术的发展进行了展望,对船舶惯性导航技术的发展方向提出了看法。  相似文献   

19.
传统的船舶仪表系统存在着工作效率低、控制精度差的缺陷。为了解决上述问题,引入DSP技术对船舶仪表系统进行研究。依据船舶仪表面板设计船舶仪表系统框架,以此为基础,对系统硬件与软件进行具体设计。系统硬件为仪表组件模块、电路模块与控制模块;系统软件为信号采集与处理单元、操纵信号分析单元与报警单元。通过系统硬件与软件的设计实现了船舶仪表系统的运行。通过测试得到,与传统的船舶仪表系统相比较,设计的船舶仪表系统极大的提升了工作效率与控制精度,充分说明设计的船舶仪表系统具备更好的性能。  相似文献   

20.
现代船舶的管理朝着高效、安全的方向发展,同时在现代信息技术的驱动下,船舶安全技术朝着自动化以及智能化方向发展。随着计算机技术的迅猛发展,这对于船舶航行过程中相关数据信息的采集以及处理变得十分便捷。本文基于单片机技术原理,研究了船舶主轴扭矩以及转速信号的采集系统设计。本文分析了单片机的技术原理,研究了船舶主轴扭矩以及转速测量技术原理,并且设计出了信号采集的整体系统。本文的研究对于提高我国船舶主轴扭矩以及转速信号的采集技术有着巨大的促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号