首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
公路运输   1篇
综合类   1篇
水路运输   4篇
综合运输   1篇
  2018年   3篇
  2016年   1篇
  2015年   2篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 67 毫秒
1
1.
In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion ...  相似文献   
2.
Yttria-stabilized zirconia (YSZ) is widely used as thermal barrier coatings (TBCs) to reduce heat transfer between hot gases and metallic components in gas-turbine engines. Porous structure can generally reduce the lattice thermal conductivity of bulk material, so porous YSZ can be potentially used as TBCs with better thermal performance. In this work, we investigate the thermal conductivity of nanoporous YSZ using the nonequilibrium molecular dynamics (NEMD) simulation, and comprehensively discuss the effects of cross-sectional area, pore size, structure length, porosity, Y2O3 concentration and temperature on the thermal conductivity. To compare with the results of the NEMD simulation, we solve the heat diffusion equation and the gray Boltzmann transport equation (BTE) to calculate the thermal conductivity of the same porous structure. From the results, we find that the thermal conductivity of YSZ has a weak dependence on the structure length at the length range from 10 to 26 nm, which indicates that the majority of heat carriers have very short mean free path (MFP) but there exists small percentage (about 3%) of phonons with longer MFP (larger than 10 nm) contributing to the thermal conductivity. The thermal conductivity predicted by NEMD simulation is smaller than that of solving heat diffusion equation (diffusive limit) with the same porous structure. It shows that the presence of pores affects phonon scattering and further affects the thermal conductivity of nanoporous YSZ. The results agree well with the solution of gray BTE with a average MFP of 0.6 nm. The thermal conductivity of nanoporous YSZ weakly depends on the Y2O3 concentration and temperature, which shows the phonons with very short MFP play the major contribution to the thermal conductivity. The results help to better understand the heat transfer in porous YSZ structure and develop better TBCs.  相似文献   
3.
This article seeks to develop a longitudinal vehicle velocity estimator robust to road conditions by employing a tyre model at each corner. Combining the lumped LuGre tyre model and the vehicle kinematics, the tyres internal deflection state is used to gain an accurate estimation. Conventional kinematic-based velocity estimators use acceleration measurements, without correction with the tyre forces. However, this results in inaccurate velocity estimation because of sensor uncertainties which should be handled with another measurement such as tyre forces that depend on unknown road friction. The new Kalman-based observer in this paper addresses this issue by considering tyre nonlinearities with a minimum number of required tyre parameters and the road condition as uncertainty. Longitudinal forces obtained by the unscented Kalman filter on the wheel dynamics is employed as an observation for the Kalman-based velocity estimator at each corner. The stability of the proposed time-varying estimator is investigated and its performance is examined experimentally in several tests and on different road surface frictions. Road experiments and simulation results show the accuracy and robustness of the proposed approach in estimating longitudinal speed for ground vehicles.  相似文献   
4.
Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring. Also, local scouring occurs around the submerged vanes over time, and identifying the effective factors on the scouring phenomena around these submerged vanes is one of the important issues in river engineering. The most important aim of this study is investigation of scour pattern around submerged vanes located in 180° bend experimentally and numerically. Firstly, the effects of various parameters such as the Froude number (Fr), angle of submerged vanes to the flow (α), angle of submerged vane location in the bend (θ), distance between submerged vanes (d), height (H), and length (L) of the vanes on the dimensionless volume of the scour hole were experimentally studied. The submerged vanes were installed on a 180° bend whose central radius and channel width were 2.8 and 0.6 m, respectively. By reducing the Froude number, the scour hole volume decreased. For all Froude numbers, the biggest scour hole formed at θ?=?15°. In all models, by increasing the Froude number, the scour hole volume significantly increases. In addition, by increasing the submerged vanes’ length and height, the scour hole dimensions also grow. Secondly, using gene expression programming (GEP), a relationship for determining the scour hole volume around the submerged vanes was provided. For this model, the determination coefficients (R2) for the training and test modes were computed as 0.91 and 0.9, respectively. In addition, this study performed partial derivative sensitivity analysis (PDSA). According to the results, the PDSA was calculated as positive for all input variables.  相似文献   
5.
Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring. Also, local scouring occurs around the submerged vanes over time, and identifying the effective factors on the scouring phenomena around these submerged vanes is one of the important issues in river engineering. The most important aim of this study is investigation of scour pattern around submerged vanes located in 180° bend experimentally and numerically. Firstly, the effects of various parameters such as the Froude number(Fr), angle of submerged vanes to the flow(α), angle of submerged vane location in the bend(θ),distance between submerged vanes(d), height(H), and length(L) of the vanes on the dimensionless volume of the scour hole were experimentally studied. The submerged vanes were installed on a 180° bend whose central radius and channel width were 2.8 and 0.6 m, respectively. By reducing the Froude number, the scour hole volume decreased. For all Froude numbers, the biggest scour hole formed at θ = 15°. In all models, by increasing the Froude number, the scour hole volume significantly increases. In addition, by increasing the submerged vanes' length and height, the scour hole dimensions also grow. Secondly,using gene expression programming(GEP), a relationship for determining the scour hole volume around the submerged vanes was provided. For this model, the determination coefficients(R~2) for the training and test modes were computed as 0.91 and 0.9,respectively. In addition, this study performed partial derivative sensitivity analysis(PDSA). According to the results, the PDSA was calculated as positive for all input variables.  相似文献   
6.
In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05–6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.  相似文献   
7.
The transportation literature is rich in the application of neural networks for travel time prediction. The uncertainty prevailing in operation of transportation systems, however, highly degrades prediction performance of neural networks. Prediction intervals for neural network outcomes can properly represent the uncertainty associated with the predictions. This paper studies an application of the delta technique for the construction of prediction intervals for bus and freeway travel times. The quality of these intervals strongly depends on the neural network structure and a training hyperparameter. A genetic algorithm–based method is developed that automates the neural network model selection and adjustment of the hyperparameter. Model selection and parameter adjustment is carried out through minimization of a prediction interval-based cost function, which depends on the width and coverage probability of constructed prediction intervals. Experiments conducted using the bus and freeway travel time datasets demonstrate the suitability of the proposed method for improving the quality of constructed prediction intervals in terms of their length and coverage probability.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号