首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
URANS simulations of catamaran interference in shallow water   总被引:1,自引:0,他引:1  
This paper investigates the interference effects of wave systems on a multi-hull vessel in shallow water. A numerical analysis is made using the URANS code CFDSHIP-Iowa V.4 on the DELFT Catamaran model 372. The test matrix for numerical computations includes two separation distances (s = 0.17; 0.23) and the depth values of h/T = 8.2, 2.5 and 2, at several speeds ranging within Fr H = 0.775–1.739. Numerical results are compared with the experimental data of the Bulgarian Ship Hydrodynamic Center, and verification and validation for resistance, sinkage and trim are also performed. Results show that, at critical speed (Fr H ≈ 1), the presence of a finite depth significantly affects the catamaran total resistance, which, in shallower water, increases considerably with respect to deep water. At low h/T, small effects of the water depth on resistance occur at subcritical and supercritical speeds. The interference effects seem to be more relevant in shallow, rather than in deep water, with maximum IF values registered at critical speeds (Fr H ≈ 1). Similarly to deep water, the lower the separation distance the greater the interference value. Moreover, in shallow water some negative interference is observed at Fr > 0.5. Wave patterns and wave profiles are analyzed and a comparison is made between several configurations of catamaran and a mono-hull vessel, in order to analyze how water depth and separation distance determine resistance and interference. Finally, a vortex instability study is also included.  相似文献   

2.
By taking advantage of the user-defined load subroutine (loadud) and the user common subroutine (usercomm) in LS-DYNA, the authors proposed a new coupled approach for simultaneously calculating structural damage and the planar 3DOF ship motions in ship collisions. The coupled procedure aimed at predicting the detailed structural damage together with reasonable global ship motions. This paper extends the method to consider the full 6DOF ship motions; thus, ship collision as well as grounding accidents can be properly handled. This method is particularly useful for design purposes because the detailed ship hull profile is not needed.A traditional ship maneuvering model is used for the in-plane surge, sway and yaw degrees of freedom with a series of nondimensional coefficients determined from experiments. It is assumed that the out-of-plane degrees of freedom are not coupled with the in-plane ship motions, and there is no coupling among roll, pitch and heave motions. The implementation is verified through free decay tests, and the obtained natural periods show good agreement with theoretical results.Several collision and grounding cases are simulated in which a supply vessel crashes into rigid plates with different orientations. The effects of the roll motion, the heave and pitch motions and the full 6DOF motions are studied. The results are compared with those from a 6DOF decoupled method. Ship motions through the proposed method compare reasonably well with SIMO results. It is found that several consecutive impacts may occur in the simulation of one collision case due to the periodic motions. This is not taken into account in the decoupled method, which makes this method unconservative.  相似文献   

3.
Part 2 of this two-part paper presents the analysis and validation results of local flow characteristics for a surface combatant Model 5415 bare hull under static and dynamic planar motion mechanism simulations. Unsteady Reynolds averaged Navier–Stokes (URANS) computations are carried out by a general-purpose URANS/detached eddy simulation research code CFDShip-Iowa Ver. 4. The objective of this research is to investigate the capability of the code in relation to the computational fluid dynamics-based maneuvering prediction method. In the current study, the ship is subjected to static drift, steady turn, pure sway and pure yaw motions at Froude number 0.28. The free surface, three dimensional vortical structure and, the validation of two dimensional local flow quantities together with the available experimental data are of the interest in the current study. Part 1 provides the verification and validation results of forces and moment coefficients, hydrodynamic derivatives, and reconstructions of forces and moment coefficients from resultant hydrodynamic derivatives.  相似文献   

4.
Part 1 of this two-part paper presents the verification and validation results of forces and moment coefficients, hydrodynamic derivatives, and reconstructions of forces and moment coefficients from resultant hydrodynamic derivatives for a surface combatant Model 5415 bare hull under static and dynamic planar motion mechanism simulations. Unsteady Reynolds averaged Navier–Stokes (URANS) computations are carried out by a general purpose URANS/detached eddy simulation research code CFDShip-Iowa Ver. 4. The objective of this research is to investigate the capability of the code in regards to the computational fluid dynamics based maneuvering prediction method. In the current study, the ship is subjected to static drift, steady turn, pure sway, pure yaw, and combined yaw and drift motions at Froude number 0.28. The results are analyzed in view of: (1) the verification for iterative, grid, and time-step convergence along with assessment of overall numerical uncertainty; and (2) validations for forces and moment coefficients, hydrodynamic derivatives, and reconstruction of forces and moment coefficients from resultant hydrodynamic derivatives together with the available experimental data. Part 2 provides the validation for flow features with the experimental data as well as investigations for flow physics, e.g., flow separation, three dimensional vortical structure, and reconstructed local flows.  相似文献   

5.
Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.  相似文献   

6.
摘要:为进一步研究船舶在大幅度转向时艏摇和横摇的耦合机制,在非线性船舶运动数学模型的基础上,进行了不同情形下的操纵仿真试验。试验结果显示在大舵角转向时,船舶的艏摇和横摇运动存在较强的耦合作用,横摇幅度和艏摇幅度存在正相关性。指出大幅度的横摇使艏摇出现相位滞后和偏离基准航向的现象;在横摇过大的情况下,大幅度动舵和加速操纵将导致稳性迅速消失和航向打横。  相似文献   

7.
The behavior of a ship in regular waves during maneuvering was studied by using a two-time scale model. The maneuvering analysis was based on Söding’s (Schiffstechnik 1982; 29:3–29) nonlinear slender-body theory generalized to account for heel. Forces and moments due to rudder, propeller, and viscous cross-flow follow from the state-of-the-art procedures. The developed unified theory of seakeeping and maneuvering was verified and validated for calm water by comparing it with experimental and calculated zigzag and circle maneuvers. Linear wave-induced motions and loads were determined by generalizing the Salvesen-Tuck-Faltinsen (Trans SNAME 1970; 78:250–287) strip theory. The mean second-order wave loads in incident regular deep water waves in oblique sea conditions were estimated by the potential flow theories of Faltinsen et al. (Proc 13th Symp Naval Hydrody 1980), Salvesen (Proc Intl Symp Dynam Mar Vehicl Struct Wave 1974), and Loukakis and Sclavounos (J Ship Res 1978; 22:1–19). The considered theories cover the whole range of important wavelengths. Comparisons between the different mean second-order wave load theories and available experimental data were carried out for different ship hull forms when the ship was advancing forward on a straight course. The mentioned methods have been incorporated into the maneuvering model. Their applicability from the perspective of the maneuvering ability of the selected types of ships was investigated in given wave environments. The wave conditions are valid for realistic maneuvering cases in open coastal areas. It was demonstrated that the incident waves may have an important influence on the maneuvering behavior of a ship. The added resistance, mean second-order transverse force, and yaw moment also play important roles.  相似文献   

8.
The accurate prediction of waterjet propulsion using computational fluid dynamics (CFD) is of interest for performance analyses of existing waterjet designs as well as for improvement and design optimization of new waterjet propulsion systems for high-speed marine vehicles. The present work is performed for three main purposes: (1) to investigate the capability of a URANS flow solver, CFDSHIP-IOWA, for the accurate simulation of waterjet propelled ships, including waterjet–hull interactions; (2) to carry out detailed verification and validation (V&V) analysis; and (3) to identify optimization opportunities for intake duct shape design. A concentrated effort is applied to V&V work and performance analysis of waterjet propelled simulations which form the focus of this paper. The joint high speed sealift design (JHSS), which is a design concept for very large high-speed ships operating at transit speeds of at least 36 knots using four axial flow waterjets, is selected as the initial geometry for the current work and subsequent optimization study. For self-propelled simulations, the ship accelerates until the resistance equals the prescribed thrust and added tow force, and converges to the self propulsion point (SPP). Quantitative V&V studies are performed on both barehull and waterjet appended designs, with corresponding experimental fluid dynamics (EFD) data from 1/34 scale model testing. Uncertainty assessments are performed on iterative convergence and grid size. As a result, the total resistance coefficient for the barehull case and SPP for the waterjet propelled case are validated at the average uncertainty intervals of 7.0 and 1.1%D, respectively. Predictions of CFD computations capture the general trend of resistance over the speed range of 18–42 knots, and show reasonable agreement with EFD with average errors of 1.8 and 8.0%D for the barehull and waterjet cases, respectively. Furthermore, results show that URANS is able to accurately predict the major propulsion related features such as volume flow rate, inlet wake fraction, and net jet thrust with an accuracy of ~9%D. The flow feature details inside the duct and interference of the exit jets are qualitatively well-predicted as well. It is found that there are significant losses in inlet efficiency over the speed range; hence, one objective for subsequent optimization studies could be maximizing the inlet efficiency. Overall, the V&V work indicates that the present approach is an efficient tool for predicting the performance of waterjet propelled JHSS ships and paves the way for future optimization work. The main objective of the optimization will be reduction of powering requirements by increasing the inlet efficiency through modification of intake duct shape.  相似文献   

9.
URANS analysis of a broaching event in irregular quartering seas   总被引:1,自引:0,他引:1  
Ship motions in a high sea state can have adverse effects on controllability, cause loss of stability, and ultimately compromise the survivability of the ship. In a broaching event, the ship losses control, naturally turning broadside to the waves, causing a dangerous situation and possibly capsizing. Classical approaches to study broaching rely on costly experimental programs and/or time-domain potential or system-based simulation codes. In this paper the ability of Reynolds averaged Navier–Stokes (RANS) to simulate a broaching event in irregular waves is demonstrated, and the extensive information available is used to analyze the broaching process. The demonstration nature of this paper is stressed, as opposed to a validated study. Unsteady RANS (URANS) provides a model based on first principles to capture phenomena such as coupling between sway, yaw, and roll, roll damping, effects of complex waves on righting arm, rudders partially out of the water, etc. The computational fluid dynamics (CFD) method uses a single-phase level-set approach to model the free surface, and dynamic overset grids to resolve large-amplitude motions. Before evaluating irregular seas two regular wave cases are demonstrated, one causing broaching and one causing stable surf riding. A sea state 8 is imposed following an irregular Bretschneider spectrum, and an autopilot was implemented to control heading and speed with two different gains for the heading controller. It is concluded that the autopilot causes the ship to be in an adverse dynamic condition at the beginning of the broaching process, and thus is partially responsible for the occurrence of the broaching event.  相似文献   

10.
This paper details the CFD validation studies carried out as a prerequisite for multi-fidelity CFD-based design optimization of high-speed passenger-only ferries aimed at reducing far-field wake energy that causes beach erosion. A potential flow program (WARP) and a URANS program (CFDSHIP) were validated using full-scale measurements of resistance, sinkage, trim, and far-field wake train obtained over a wide range of speeds for two high-speed semi-planing foil-assisted catamarans: Spirit (LOA-22 m) and 1060 (LOA-17 m). This study posed a unique combination of challenges for CFD modeling: the foil appended geometry required complicated surface overset grids, the effect of the waterjet and wind resistance had to be modeled, and a method had to be devised to extrapolate the calculated near-field elevation to get the far-field wake train using Havelock sources. A more concentrated effort was applied to the URANS verification and validation which forms the focus of this paper. The results show that URANS is able to accurately predict the resistance and motions for both vessels when coupled with models that account for the propulsors and air resistance. The overall accuracy of URANS for the performance analysis of the foil-assisted, semi-planing catamarans was adequate to warrant its use as a tool for subsequent design and optimization of a new vessel with significantly reduced wakes.  相似文献   

11.
The experimental procedure to predict the full-scale performance of the CRP-POD propulsion system is studied. In the CRP-POD system, the RPM ratio of the two propellers is not mechanically fixed, in contrast with conventional CRP systems. Therefore the existing procedure for conventional CRP systems is not appropriate for evaluating the performance of each propeller. In this paper, the characteristics of the CRP-POD system, designed for a 9,600 TEU class container carrier, are studied experimentally. Based on this study, a procedure for propulsive performance prediction for CRP-POD propulsion ships is suggested.  相似文献   

12.
操纵性相关性分析一直以来是受到国内外学者的关注,但是由于其复杂性,至今未能很好地解决.目前,模型试验的数据往往是直接预报到实船的操纵性能,这有可能导致很大的偏差,影响船舶的航行安全.本文针对育鲲轮,进行了实船试验与模型试验的相关性分析.首先进行了实船回转试验和z形试验,测试了该船的操纵性.通过试验数据分析获得了纵距、横距、战术直径、回转直径、超越角等操纵性特征参数,试验过程中也进行了船舶姿态,如纵、横摇以及主机功率的测试.通过实船回转试验发现,主机功率比直航时增大了大约15%,这给船舶设计提供了参考.然后,采用6m长左右的模型也进行了相同试验的测试,电机转速与实船主机转速相似,且一直保持不变.最后,分析比较了模型所测数据与实船数据,发现特征参数误差基本都在10%以内.说明模型长度、螺旋桨的模拟等模型试验方案基本可行.  相似文献   

13.
Currently, little information exists on the validity of interface-capturing methods in predicting local ship wave loads in short and steep waves. This study compares computational and experimental results in such a case (kA = 0.24, L wave /L ship = 0.16). The results allow the variation of wave loading between ten locations in the bow area of the ship to be observed. The computations were performed with an unstructured RANS solver that models free-surface flows with a volume-of-fluid method. In the model tests, the wave loads were measured with pressure sensors. The analysis of the results focuses on the wave conditions and on the pressure histories of the local wave loads. The computational and experimental results are in good qualitative agreement and encourage the further use of the computational results.  相似文献   

14.
Multihull ships are widely used for sea transportation, and those with four hulls are known as quadramarans. Hull position configurations of a quadramaran include the diamond, tetra, and slice. In general, multihull vessels traveling at high speeds have better hydrodynamic efficiency than monohull ships. This study aims to identify possible effects of various quadramaran hull position configurations on ship resistance for hull dimensions of 2 m length, 0.21 m breadth, and 0.045 m thickness. We conducted a towing test in which we varied the hull spacing and speed at Fr values between 0.08 and 0.62 and measured the total resistance using a load cell transducer. The experimental results reveal that the lowest total resistance was achieved with a diamond quadramaran configuration at Fr = 0.1-0.6 and an effective interference factor of up to 0.35 with S/L = 3/10 and R/L = 1/2 at Fr = 0.62.  相似文献   

15.
EFD and CFD for KCS heaving and pitching in regular head waves   总被引:3,自引:0,他引:3  
The KCS container ship was investigated in calm water and regular head seas by means of EFD and CFD. The experimental study was conducted in FORCE Technology’s towing tank in Denmark, and the CFD study was conducted using the URANS codes CFDSHIP-IOWA and Star-CCM+ plus the potential theory code AEGIR. Three speeds were covered and the wave conditions were chosen in order to study the ship’s response in waves under resonance and maximum exciting conditions. In the experiment, the heave and pitch motions and the resistance were measured together with wave elevation of the incoming wave. The model test was designed and conducted in order to enable UA assessment of the measured data. The results show that the ship responds strongly when the resonance and maximum exciting conditions are met. With respect to experimental uncertainty, the level for calm water is comparable to PMM uncertainties for maneuvering testing while the level is higher in waves. Concerning the CFD results, the computation shows a very complex and time-varying flow pattern. For the integral quantities, a comparison between EFD and CFD shows that the computed motions and resistance in calm water is in fair agreement with the measurement. In waves, the motions are still in fair agreement with measured data, but larger differences are observed for the resistance. The mean resistance is reasonable, but the first order amplitude of the resistance time history is underpredicted by CFD. Finally, it seems that the URANS codes are in closer agreement with the measurements compared to the potential theory.  相似文献   

16.
This paper introduces a new method for the prediction of ship maneuvering capabilities. The new method is added to a nonlinear six-degrees-of-freedom ship motion model named the digital, self-consistent ship experimental laboratory (DiSSEL). Based on the first principles of physics, when the ship is steered, the additional surge and sway forces and the yaw moment from the deflected rudder are computed. The rudder forces and moments are computed using rudder parameters such as the rudder area and the local flow velocity at the rudder, which includes contributions from the ship velocity and the propeller slipstream. The rudder forces and moments are added to the forces and moments on the hull, which are used to predict the motion of the ship in DiSSEL. The resulting motions of the ship influence the inflow into the rudder and thereby influence the force and moment on the rudder at each time step. The roll moment and resulting heel angle on the ship as it maneuvers are also predicted. Calm water turning circle predictions are presented and correlated with model test data for NSWCCD model 5514, a pre-contract DDG-51 hull form. Good correlations are shown for both the turning circle track and the heel angle of the model during the turn. The prediction for a ship maneuvering in incident waves will be presented in Part 2. DiSSEL can be applied for any arbitrary hull geometry. No empirical parameterization is used, except for the influence of the propeller slipstream on the rudder, which is included using a flow acceleration factor.  相似文献   

17.
针对国际海事组织(IMO)正在制定的船舶第二代完整稳性衡准中的纯稳性丧失直接评估衡准,本文提出了纵荡-横荡-横摇-首摇4自由度运动耦合的标准数学模型,进行了纯稳性丧失直接评估.该方法首先基于MMG操纵性标准方法,构建纵荡-横荡-横摇-首摇4自由度运动方程,同时考虑了舵控制方程,其次在纵荡、横荡、横摇、首摇方程右边考虑时域波浪力/力矩,且横摇方程右边进一步考虑了粘性横摇阻尼力矩和波浪中复原力臂变化.最后采用ONR内倾船进行了尾斜浪中纯稳性丧失直接数值计算,为纯稳性丧失直接稳性评估衡准的应用奠定了基础.  相似文献   

18.
Shortcomings of the traditionally used nonlinear restoring stiffness of TLPs, i.e. unrealistically high stiffness of horizontal motions, their uncoupling and secant formulation are pointed out. Therefore, new consistent restoring stiffness is derived. The platform is considered as a rigid body moored by flexible pretensioned tendons. Global horizontal low frequency motions (surge, sway and yaw) with large amplitudes as a result of dominant second order wave excitation and small stiffness, and vertical local motions (heave, roll and pitch) of higher frequency and small amplitudes excited by the first order wave forces, are distinguished. Hence, horizontal displacements represent position parameters in analysis of vertical motions. First, the linear restoring stiffness, which consists of the tendon conventional axial stiffness, the tendon geometric stiffness and the platform hydrostatic stiffness, is established. Then it is extended to large displacements resulting in new secant restoring stiffness. It depends on surge, sway and yaw displacements and is the same in any horizontal direction. Also, the tangent stiffness, which gives more accurate results, is derived. Heave is defined as vertical projection of axial tendon vibrations and platform tangential oscillations, which are analyzed in their natural moving coordinate system. Inertia force due to setdown, as a slave d.o.f. of the master horizontal motions, is taken into account in the dynamic equilibrium equations. As a result the complete tangential stiffness matrix of horizontal and vertical motions includes 7 d.o.f. The known secant restoring stiffness matrices are compared with the new one and noticed differences are discussed. All theoretical contributions are illustrated by relatively simple numerical example.  相似文献   

19.
合成射流激励器具有体积小、质量轻、结构简单、对流体外形影响小等优点,非常适合用于水下机器人的驱动及姿态调节。文章设计了一种矢量合成射流激励器,该激励器的出口是柔性的,采用线驱动方式实现出口偏转角度的连续调节,进而实现推力的矢量控制。建立了用于控制激励器出口偏转角度的数学模型,以及激励器作用力的数学模型。采用有限体积法对该矢量合成射流激励器在不同偏转角度下的流场进行了数值计算,流场设定为三维、粘性、非定常和不可压流场,给出了不同偏转角度下激励器在各个方向上的作用力变化曲线。通过对作用力的计算结果进行分析发现,合成射流的推力比相同质量流量下稳态射流的推力提高50%。另外,还发现激励器各方向作用力的合力基本不随偏角发生改变。结合文中建立的激励器作用力数学模型进行分析,可知合成射流的推力增强效应主要是由激励器外部流体的阻滞作用引起的。  相似文献   

20.
Ship impact against offshore floating wind turbine (OFWT) has been identified as one of the major hazards with the development of OFWTs. The dynamic responses of OFWTs under ship impact should be taken into consideration during the design phase. This paper addresses a study on the dynamic responses of an OFWT in ship collision scenarios. Firstly, a mathematical model for external mechanism of ship-OFWT collision scenario is developed. Secondly, this model is combined with an in-house programme, DARwind, which can be used to predict nonlinear dynamic responses of whole OFWT system in time-domain. With the newly combined analysis tool, simulation cases for different scenarios are conducted to investigate the nonlinear dynamic responses of OFWT system, including the cases of still water condition, wave-only condition and wind-wave condition. It is shown that in still water condition, the ship impact will more obviously change the responses of motions and mooring system, compared with those in wave and wave-wind conditions. In the wave-only condition, these motions responses of platform are suppressed by wave effect, but the tower vibration and tower top deformation are sensitive to ship collision. For the wave-wind combined condition, the motions increment in surge and pitch due to ship collision becomes smaller than that of wave-only condition, but yaw motion has a considerable variation compared with those of the other two conditions. Additionally, the blade tip deformation increment due to ship collision are analyzed and it is found that the edgewise tip deformation got more obvious increment than that of flapwise. To further asses the safety of OFWT, the acceleration at nacelle are analyzed because some equipment might be sensitive to acceleration. The analysis results indicate that even though the OFWT structure doesn't get critical damage by ship impact, the equipment inside may still fail to work due to the high value of acceleration induced by ship impact. The research outcomes can benefit the safety design of OFWT in the engineering practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号