首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对无人车路径跟踪过程中跟踪效果与车辆稳定性这一多目标控制问题,基于分层控制理论提出了一种分布式驱动无人车辆路径跟踪与稳定性协调控制策略。建立了车辆动力学模型和路径跟踪模型,利用滑模控制方法设计了上层控制器,旨在减小路径跟踪过程中的航向偏差和横向偏差的同时确保车辆自身的稳定性。在下层控制器中,设计了一种四轮轮胎力优化分配方法,根据上层控制器需求,结合车辆横摆与侧倾稳定性情况,实现四轮轮胎力的定向控制分配。基于CarSim和Simulink搭建了联合仿真模型并进行仿真实验,结果表明,提出的协调控制策略能够有效地控制车辆路径跟踪中的航向偏差和横向偏差,同时确保车辆的侧倾与横向稳定性。  相似文献   

2.
李以农  卢少波  杨柳 《汽车工程》2007,29(8):692-697
为了实现复杂工况下车辆自动跟踪控制,建立了纵横向耦合车辆模型,研究了车辆在弯道变速行驶工况的动力学耦合控制问题,根据滑模控制以及动态表面控制理论,提出了一种基于车辆转向与驱动控制的综合控制器,并针对横向车速不可测,设计了横向速度观测器。仿真结果表明该综合控制器具有良好跟踪性能,在复杂工况下表现出较好的动、静态特性。  相似文献   

3.
为了提高四轮独立驱动智能电动汽车在变曲率弯道下的轨迹跟踪精度和横摆稳定性,提出了一种模型预测控制与直接横摆力矩控制协同的综合控制方法。建立了横纵向耦合的车辆动力学模型,采用2阶龙格库塔离散法保证了离散模型的精度,并基于简化的2自由度动力学模型推导了车辆横摆稳定性约束,设计了非线性模型预测控制器;利用直接横摆力矩控制能够改变车辆横摆角速度和航向角的特点,考虑模型预测控制器的预测状态、控制量以及跟踪误差,设计了协同控制规则。仿真结果表明,协同控制方法解决了考虑横摆稳定性约束的模型预测控制器中存在的稳定性约束与控制精度相矛盾的问题,并补偿了模型预测控制器没有可行解时对横摆稳定性的约束,同时提高了智能汽车的轨迹跟踪精度和横摆稳定性。  相似文献   

4.
宋强  王冠峰  商赫  张念忠 《汽车工程》2023,(11):2104-2112+2138
为改善高速低附着路面上的车辆动力学性能,本文针对分布式驱动电动汽车提出一种基于多参数控制的操纵稳定性控制策略,包括上层轨迹跟踪控制和下层转矩分配控制。上层控制器设计基于2自由度车辆模型和驾驶员预瞄偏差模型,提出了MPC轨迹跟踪控制策略,实现对侧向偏差、横摆角偏差、质心侧偏角、横摆角速度的多参数控制。下层控制器以轮胎负荷率最小为优化目标,获得4个车轮电机转矩的最优分配量,借助于7自由度动力学模型,在双移线、蛇行工况下完成了CarSim-Simulink联合仿真。结果表明:提出的控制策略改善了高速、低附着工况下的操纵稳定性和轨迹跟踪精度。  相似文献   

5.
为提高智能车辆轨迹跟踪精度,以车辆动力学模型为基础,提出一种基于线性时变模型预测控制的轨迹跟踪方法。该方法将车辆非线性动力学跟踪误差模型进行线性化和离散化处理,作为控制器的预测模型;建立系统控制增量的目标函数,设计状态量、控制量和控制增量约束条件,利用带约束的二次规划问题求解目标函数;将求得的最优序列的第一项控制量作用于系统。实验结果表明,在双移线工况下,当车速小于15 m/s时,横向最大误差小于0.52 m,航向最大误差小于0.067 rad。  相似文献   

6.
为提高汽车在极限工况下的行驶稳定性,提出了一种基于集成式线控液压制动(IEHB)系统的车辆动力学稳定性控制策略。在多学科领域复杂系统建模仿真平台(AMESim)中建立了IEHB执行机构、15自由度非线性车辆动力学物理仿真模型;采用分层控制构架,运用线性比例控制与非线性补偿控制设计了横摆力矩控制层,设计了制动力矩分配层和执行层以保证被控车辆对参考模型层输出的跟踪品质。结果表明:相比于基于传统车身电子稳定性控制系统(ESC)的动力稳定性控制系统,横摆角速度峰值跟踪误差减少13.6%,收敛时间缩短1.3 s,侧倾角、侧偏角、侧向加速度等也均有明显改善,车辆行驶稳定性显著提高。因而,本控制方法能确保车辆在极限工况下快速、准确地跟踪参考模型输出。  相似文献   

7.
本文基于横摆角速度跟踪控制理论设计了四轮转向车辆稳定性控制器,实现了各速度下控制器的优化及其硬件在环仿真。结果表明控制器在高速段能改善汽车的动力学性能。与传统的前轮转向车辆相比具有优越的操纵稳定性。  相似文献   

8.
为了解决智能车辆在工况变化时跟踪精度下降和稳定性变差的问题,提出基于强化学习的变参数模型预测控制(MPC)算法多目标控制策略,实现智能车辆路径跟踪控制系统的参数自适应整定。基于车辆动力学模型设计其线性时变MPC控制器,获得最优前轮转向角和附加横摆力矩。基于Actor-Critic强化学习架构,设计进行控制参数整定的深度确定性策略梯度(DDPG)智能体和双延迟深度确定性策略梯度(TD3)智能体,构造以跟踪精度和稳定性为目标的收益函数,并搭建对接工况和变曲率工况2种典型仿真场景进行算法性能验证,当车辆处于对接工况时,根据路面附着系数的变化及时调整控制器的预测时域和权重矩阵;当车辆处于变曲率工况下时,针对道路曲率变化及时调整控制器的预测时域和权重矩阵。通过MATLAB/SimuLink、CarSim和Python联合仿真分析,将强化学习方法参数整定MPC与固定参数MPC和模糊控制方法参数整定MPC进行对比,结果表明:强化学习方法更能够在保证车辆安全性的前提下,尽可能提高智能车辆在不同路面条件下的路径跟踪精度。在对接工况下,强化学习方法参数整定MPC相较于固定参数MPC和模糊控制方法参数整定M...  相似文献   

9.
四轮独立转向-独立驱动电动车(4WIS-4WID EV)具有低速机动性强、高速稳定性好的特点,是一种理想的智能车构型。本文中针对4WIS-4WID EV进行了主动避障系统的设计,主要包括避障路径规划和跟踪控制。首先基于车辆运动学模型,提出了采用七次多项式的避障路径规划算法;然后基于简化2自由度车辆动力学模型,设计了模型预测路径跟踪控制器;为提高车辆主动避障过程中的操纵稳定性,路径跟踪控制算法采用四轮转向与直接横摆力矩控制技术。通过不同附着系数路面工况与侧风扰动工况仿真,验证了所设计的主动避障系统具有良好的避障能力和鲁棒性。  相似文献   

10.
智能车辆路径跟踪横向控制方法的研究   总被引:2,自引:0,他引:2  
提出了一种智能车辆的路径跟踪横向控制系统.系统由期望航向偏差生成器和反馈控制系统两部分组成.期望航向偏差根据车辆-道路之间运动学关系来确定;而反馈控制系统则采用基于车辆-道路动力学模型的鲁棒PID控制器.在分析系统特性的基础上设计以某一速度为基准的、ITAE性能指标最优的固定增益鲁棒PID控制器和前置滤波器.在分析纵向速度对反馈系统影响的前提下,给出固定增益PID参数所适用的车速范围;分析了PID参数对闭环反馈系统的影响,调整了其他车速区间的PID参数.实车试验验证的结果表明,所提出的路径跟踪横向控制系统具有良好的路径跟踪能力.  相似文献   

11.
智能车辆系统辨识与控制算法研究   总被引:2,自引:0,他引:2  
采用逆M序列作为系统的输入信号,通过最小二乘算法得到车辆转向系统、驱动系统的传递函数,结合车辆预瞄运动学模型和车辆二自由度转向动力学模型,建立车辆转向控制与位置误差数学模型.根据现代控制理论设计最优导航控制器稳定跟踪目标路径,基于Backstepping函数控制算法,选取Lyapunov函数设计智能车辆换道及超车轨迹跟踪控制器.仿真分析和试验结果表明:所设计的控制器在智能车辆户外自主导航中具有良好的跟踪性能.  相似文献   

12.
针对自动驾驶车辆行驶轨迹的横向跟踪问题,设计了线性时变模型预测控制器。以车辆3自由度动力学模型为预测模型,以横向位置偏差最小为主要控制目标,考虑车辆状态约束、控制约束和轮胎侧偏角约束,优化了自动驾驶车辆轨迹跟踪安全性、转向稳定性和操作可行性等多目标性能。搭建MATLAB/Simulink和CarSim联合仿真模型,并将所设计的控制器控制效果与熟练驾驶员操纵结果、线性二次规划控制器控制效果进行了比较分析,结果表明,所设计的控制器可以有效解决多约束条件下自动驾驶车辆行驶轨迹的横向跟踪问题,且在安全性、转向稳定性和操作可行性方面具有显著的优势。  相似文献   

13.
为提高智能车辆弯道换道的安全性能,对其换道轨迹跟踪控制进行了研究。考虑到纵向速度、横向速度及横摆角速度对换道过程的影响,建立了非完整约束条件下车辆的运动学和动力学模型。基于积分反演方法设计了外环车辆位姿控制器,将换道轨迹跟踪问题转换为在任意初始误差下跟踪参考位姿问题,基于非线性积分滑模控制方法设计了内环的动力学控制器,实现了对车辆运行速度的跟踪,分析了该控制系统的稳定性和收敛性。仿真结果表明,所建立的控制系统可保证跟踪误差全局一致有界收敛,具有较快的收敛性和对时变参数不确定性的鲁棒性。  相似文献   

14.
针对复杂工况横向控制精度低、稳定性差的问题,提出了一种基于可拓优度评价的智能汽车横向轨迹跟踪控制方法,创新采用可拓优度评价控制方法,设计了两层结构的横向轨迹跟踪控制系统。上层控制器包括基于预瞄偏差的PID反馈控制和基于道路曲率的PID前馈-反馈控制;下层控制器利用可拓优度评价方法来评价上层两控制器的优劣,根据实时的车辆-道路系统状态,选择优度高的控制器输出值,从而实现智能汽车横向轨迹跟踪控制功能,不论是小偏差、小曲率工况,还是大偏差、大曲率工况,都能达到良好的控制效果,提升了智能汽车横向控制系统的工况适应性和可靠性。仿真结果表明,与单一PID反馈控制相比,采用优度评价控制时,横向位置偏差和航向偏差分别减小了16.67%和12%。  相似文献   

15.
为解决高速工况下低附着系数复杂路面上转向和行驶稳定性等难以控制的问题,建立了6自由度整车动力学模型,在传统模型预测控制理论基础上,设计了前轮主动转向控制器,并通过CarSim和MATLAB/Simulink进行联合仿真,在兼顾路径跟踪精度和行驶稳定性的前提下,对控制器参数进行优化,使车辆在中低速下路径跟踪达到最佳状态,在较高车速下加入侧偏角软约束,以保证跟踪精度和行驶稳定性。试验结果表明,提出的控制方法能保证车辆在冰雪路面高速行驶时具备一定的转向精度和行驶稳定性。  相似文献   

16.
为更好地实现对无人驾驶汽车行驶路径的跟踪修正,基于模型预测算法控制车辆的车速和横摆角。通过建立车辆运动学模型、制定目标函数、确定约束条件,设计出了轨迹跟踪控制器。并通过Matlab/Simulink、CarSim软件搭建模型预测控制算法。结果显示,在预定工况下,车辆参考路径和实际行驶误差较小,并有较好的横向稳定性。结果表明该算法能在一定程度能保证无人驾驶汽车的安全性,为智能车辆控制提供了基础。  相似文献   

17.
为提高智能车辆路径跟踪的鲁棒性,基于模型预测控制原理提出了一种路径跟踪控制方法。该方法对车辆的3自由度非线性动力学模型进行线性化,得到线性时变模型和预测方程,并将包括控制量、控制增量等约束纳入二次规划的求解过程,同时考虑质心侧偏角、路面附着系数等影响操稳特性的约束条件。在Car Sim和MATLAB/Simulink平台上以不同车速进行了双移线工况下的联合仿真,结果显示,该控制器可较好地实现路径跟踪,并保持较好的稳定性。  相似文献   

18.
王荣本  马雷  刘锐  施树明 《公路交通科技》2004,21(2):112-114,122
本文从理论上分析了基于车辆二自由度转向动力学模型的转向控制器在低速时产生失稳的原因。为解决失稳问题,本文提出了相应的解决方法,建立了基于预瞄运动学的车辆转向控制模型,采用滑模变结构控制理论设计了车辆的转向控制器,使车辆转向控制具有良好的跟踪性能和鲁棒性。  相似文献   

19.
为了提高智能车的路径跟踪精度和行驶稳定性,针对智能车路径跟踪控制提出了一种考虑车辆纵横向协同的跟踪策略。从车辆整体系统出发,对纵向运动和横向运动进行解耦,采用分层控制的结构,上层控制器利用基于径向基函数(RBF)神经网络的自适应滑模变结构控制对车辆运动学耦合进行解耦,并用RBF神经网络对模型不确定性造成的系统扰动实时追踪;下层控制器以轮胎利用附着系数作为优化目标,将轮胎力约束在附着椭圆内。基于纵横向协同控制对纵横向轮胎力进行优化分配,从而提高极限工况下车辆路径跟踪的精确度和稳定性。  相似文献   

20.
针对紧急避让工况,提出一种基于曲率控制的路径跟踪控制方法。以车辆二自由度动力学模型为基础,设计基于曲率控制的二阶自抗扰路径跟踪控制器,采用前馈与反馈相结合的复合控制方法进行曲率跟踪控制。为了解决避让过程中侧向加速度过大或产生阶跃、曲率不连续问题,引入三次B样条曲线进行路径跟踪曲率规划,采用CarSim/Simulink联合仿真方法进行控制器性能验证。仿真结果表明,在对接和对开路面工况下,基于曲率控制的路径跟踪控制器能够保证车辆实际行驶路径曲率跟踪理想路径曲率,抵抗外界干扰能力强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号