首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文章借助动态非线性有限元软件MSC.Dytran,模拟7 m高速三体客船整船结构,在主体和附体分别撞击刚性体(码头或桥墩)的方案下,研究其在结构损伤变形、位移与速度、碰撞力以及能量吸收等方面的性能,为船体结构加强提供参考。  相似文献   

2.
计及船体梁载荷影响的船舶舷侧结构碰撞性能   总被引:1,自引:1,他引:0  
陶亮  马骏 《中国造船》2007,48(3):80-85
以被撞船舷侧结构作为研究对象,建立了两船发生侧向对中垂直碰撞的非线性有限元模型。并以此为基础,进行了被撞船舷侧结构碰撞数值仿真研究,得到了能量-碰撞船位移以及碰撞力-碰撞船位移的关系曲线;研究了预载荷对船舶舷侧结构碰撞性能的影响。数值仿真结果表明,由于船体梁载荷的作用,船舶结构碰撞性能受到一定程度的削弱。  相似文献   

3.
为探究船-冰碰撞载荷下横骨架式和纵骨架式2种船体结构的耐撞性能,利用MSC/PATRAN软件建立油船及冰体有限元模型,运用非线性有限元软件Dytran对船中舷侧结构与冰体棱角发生碰撞进行仿真。通过2种舷侧结构的船体与冰体碰撞,对比不同船体结构的损伤变形、碰撞力和能量吸收的差异,探究各种船体结构的优劣性。利用不同船体结构的优劣性能对现有的2种船体舷侧结构进行改进,合理布置横骨材、纵骨材的数量及尺度,在船舶总质量改变不大的前提下,采用优化混合骨架设计结构方法提高舷侧结构的耐撞性能。计算结果表明,该方案对冰区船舶结构加强具有重要的参考意义,可为提高冰区船舶耐撞性设计提供建议。  相似文献   

4.
撞击参数对双层舷侧结构碰撞响应的影响   总被引:8,自引:1,他引:7  
深入了解船体结构碰撞损伤特性和能量吸收机制是开展船舶耐撞性优化设计的前提。文章利用显式非线性有限元数值仿真技术对不同撞击条件下的双层舷侧结构碰撞响应进行了系列研究。研究结果表明:撞击位置、撞击角度和撞击速度的改变可能导致不同的碰撞损伤过程或结构损伤变形。  相似文献   

5.
为了研究船舶与海上风电站发生碰撞时海上风电站的损伤特性及其抗撞性能,利用非线性有限元动态响应分析程序MSC.Dytran模拟了一艘5000t船舶以不同速度侧向撞击目标风电站的动态过程.在仿真计算中,将船体作为刚性材料处理,风电站作为弹塑性材料处理,周围的水对船体的作用采用附连水质量法处理.通过仿真计算,得到了风电站的结构损伤特性、碰撞力撞深曲线、能量转化曲线及其它相关数据.计算结果表明,风机的破坏主要表现为整体结构的屈曲和局部构件的断裂,撞击船初速度对风电结构的吸能撞深曲线影响不大,碰撞力撞深曲线呈现出强的非线性特征.  相似文献   

6.
卢超  刘普 《水运工程》2018,(10):148-154
针对上游相邻码头船舶失控进入重庆白鹤梁题刻水下保护工程禁航区对连接岸边陈列馆与水下保护体的交通廊道构成危险的问题,进行了防撞结构的研究。采用ANSYSLS-DYNA软件建立非线性有限元模型仿真模拟船舶与防撞结构的碰撞过程,得到不同水位及碰撞角度下的船撞力、船撞能量和结构变形的时序结果,所采用的"群桩"形式的多级钢结构平台防撞设施是可靠的,最大结构应力小于钢材的抗拉强度,船撞下结构处于安全状态,最终可以拦停船舶,保护廊道安全,并且不破坏城市景观效果,与周围建筑环境协调。  相似文献   

7.
柔性、刚性球艏对双壳舷侧结构耐撞性能影响的研究   总被引:1,自引:0,他引:1  
采用非线性显示动力有限元软件LS_DYNA,对舷侧双壳结构在柔性和刚性球艏撞击下的动力响应进行仿真研究.采用全船有限元模型,考虑船体周围附连水质量对结构动力响应的影响.给出了碰撞力-撞深、能量-撞深曲线以及各构件吸收的能量.仿真结果表明:不同球艏撞击下舷侧内外壳板的破裂时刻、撞深和舷侧结构变形性能都有所不同.  相似文献   

8.
蔡厚平 《船舶工程》2014,36(5):99-102
从防护装置与船体产生的最大碰撞力、吸能等角度,提出将钢-聚氨酯夹层结构应用到可拆卸式船桥碰撞防护装置的改进方案。对改进后防护装置在船桥碰撞过程中采用非线性有限元技术进行仿真计算,分析碰撞过程中的碰撞力、能量吸收等耐撞性指标。通过计算表明使用钢-聚氨酯夹层结构替换防护装置的外围板,提高了结构尺度利用率,在有效行程内降低了碰撞力和增加总体的能量吸收,提高了整体的碰撞性能。  相似文献   

9.
船舶在海上航行时,存在与其他船舶发生主动或被动碰撞的风险。为准确评估船舶的耐撞性能,以某船为例,考虑多种计算工况,对目标船的耐撞性能进行动态响应计算,获得机舱及艏部区域的结构损伤、应力、能量吸收等动态结构响应,并计算获得被撞船达到临界状态时的极限撞击速度。研究成果可为船舶的防撞结构设计提供参考。  相似文献   

10.
李宝忠 《船舶工程》2015,37(S1):17-21
为研究船舶舷侧结构的碰撞损伤过程,采用非线性动态响应分析方法,使用ANASYS/LS-DYNA显式动力分析软件,对船艏和船舷垂直碰撞过程进行数值仿真,获得了碰撞力、能量吸收和结构损伤变形的时序结果。为了分析船舶舷侧结构耐撞性能,本文对比了常见油船、新型Y型和X型舷侧结构的仿真过程,结果表明新型舷侧结构在整体的耐撞性能上优于传统的舷侧结构,承载构件的不同也会对结构的耐撞性产生很大的差异。  相似文献   

11.
公务船在领海和专属经济区执行维权执法任务时,存在较高的与其他船舶发生主动或被动碰撞的风险。为了准确评估公务船的耐撞性能,本文以某公务船为例,考虑多种计算工况,对目标船的耐撞性能进行动态响应计算,获得了机舱及首部区域的结构损伤、应力、能量吸收等动态结构响应,并计算获得被撞船达到临界状态时的极限撞击速度。研究成果可为公务船的防撞结构设计提供参考。  相似文献   

12.
文章提出一种近似的解析方法评估单壳船侧结构的耐撞性。首先研究了单轴对称工字梁在横向载荷作用下结构从形成塑性铰到弦响应的力学过程,导出能量和变形的近似解析关系,然后考虑球鼻首和船侧结构的碰撞性将主要受撞区域舷侧板梁组合结构离散成为多个单轴对称工字梁,得到单壳舷侧结构碰撞过程能量吸收的近似公式,同时研究了球鼻形状以及不同碰撞位置对结构变形与能量吸收的影响。对散货船单壳舷侧结构的耐撞性用本文近似理论公式  相似文献   

13.
圆管式夹层板是一种新型船舶防护结构形式,通过在单层壳舷侧填充圆管式夹层以提高船体的耐撞性能。由于舷侧夹层结构在增加船体耐撞性的同时增加了船体质量,因此需要对圆管式夹层板进行尺度优化,在确保舷侧耐撞性增强的同时,有效控制船体质量增量。以船首与船侧相撞为例,综合考虑撞深、能量吸收、极限撞击速度和质量,提出一种耐撞性优化指标。基于正交试验设计、BP(Back Propagation)神经网络和遗传算法,得出最优的夹层板尺度,并利用有限元仿真软件MSC/Dytran对船舶碰撞进行数值仿真,从而确定最优的耐撞性舷侧结构设计。结果表明,优化后的舷侧圆管式夹层板结构在提高耐撞性能的同时能较好控制船体质量增量。研究成果在夹层板舷侧结构耐撞性能优化方面具有重要的作用,也为其他新型舷侧结构耐撞性能优化设计提供了参考。  相似文献   

14.
基于横向补给作业中各个阶段可能出现的舷侧碰撞模式所确定的两船碰撞发生时的夹角和补给作业船受撞位置,进行横向补给作业船舷侧碰撞损伤仿真研究。分析了补给作业船的吸能特性和碰撞过程中两船的运动状态,获得了碰撞力、能量吸收和损伤变形的时序结果。该文的研究可对于开展补给作业船舷侧碰撞结构损伤评估、舷侧抗撞结构的优化设计提供指导。  相似文献   

15.
船舶碰撞事故往往会引起被撞船的船体结构严重损坏,并且威胁船上人员的生命安全.在船一船碰撞中被撞船的损伤程度取决于两个方面:一是舷侧结构的碰撞性能;二是撞击船艏结构的相对刚度.船舶的艏部结构刚度一般远远高于舷侧结构的刚度,在船舶碰撞研究时,通常将撞头理想化为刚体,不考虑其损伤变形和能量吸收,这样做实际上过于保守.本文针对舰船,主要研究舰艏结构的碰撞损伤特性,将撞击舰艏作为可变形结构进行数值仿真研究,得到了一些艏部变形的规律.  相似文献   

16.
运用MSC.Dytran有限元数值仿真软件,研究比较钢—泡沫板与普通钢板在外载荷冲击作用下的力学性能,分析它们的碰撞力和能量吸收等特性。通过改变泡沫厚度研究整体结构的耐撞性,为基于钢—泡沫结构的船体耐撞结构设计提供研究基础。  相似文献   

17.
船舶碰撞不仅会引起船体结构的损坏,而且会造成人员和财产的重大损失。对于内河油船或化学品船还可能会造成原油或化学品的泄漏,严重污染稀缺的水资源,威胁河流周围居民的正常生活。本文从提高内河双壳油船、化学品船耐撞性能的角度讨论了双壳结构形式对舷侧结构耐撞性能的影响。采用非线性有限元软件LS-DYNA,在满足双壳舷侧结构体积不变(重量不变)的情况下,分析并讨论了内外壳板厚度、结构布置形式(纵骨大小、纵骨数量)、双壳间距对受撞船舶舷侧结构能量吸收的影响。结果表明:适当增加外壳板厚度和减小纵骨截面的尺寸能提高船舶舷侧结构耐撞性能。同时针对传统双壳结构形式中内壳板所吸收能量占结构总吸能份额较低的特点,比较了内壳板采用波纹板结构(槽形舱壁结构)替代传统的加筋板结构对提高舷侧结构的抗撞能力的影响,收到较好的效果。通过对各种设计方案的计算对比,从中得出了一些具有工程应用价值的结论,为我国制定内河双壳油船碰撞评估指南提供理论依据。  相似文献   

18.
船舶碰撞事故中船艏对船中垂直碰撞是最为危险的情形,为提高船舶的防撞性,在单层壳舷侧填充夹层(蜂窝式夹层板、圆管式夹层板、折叠式夹层板等)以提高舷侧结构的能量吸收能力。利用有限元仿真软件MSC/Dytran对改进的夹层板舷侧结构及常规舷侧结构在横向冲击载荷作用下的变形损伤、能量吸收及极限撞击速度进行对比分析。数值仿真结果表明,改进的夹层板结构显著提高了舷侧结构的耐撞能力,是一种先进的船舶防护结构形式,且圆管式夹层板结构最理想,上蒙皮为其主要吸能构件。  相似文献   

19.
介绍了自定位防船撞FRP浮箱的结构特点;基于ANSYS/LS-DYNA软件平台,对一艘2000DWT散货船与防撞浮箱正撞和8°斜撞的非线性动力学过程进行了数值仿真研究;分析了能量耗散过程、碰撞力衰减时程以及碰撞区的结构变形与损伤失效过程;为该装置的工程设计与工程实验提供了理论依据。  相似文献   

20.
船体结构耐撞性优化设计的主要目的是在船舶碰撞研究的基础上对结构进行优化设计,提高船体结构的耐撞性能。基于正交试验设计、BP神经网络和遗传算法,形成了船体结构耐撞性能优化设计方法。提出了一种耐撞性综合指标,并以此指标作为优化的目标函数,以结构质量为约束条件,利用MSC/Dytran有限元软件对船舶碰撞进行数值仿真,完成对某船舷侧结构进行耐撞性优化设计,结果表明优化过后结构耐撞性能有较大提高,这为结构耐撞性能优化设计提供了一种新的思路和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号