首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
航行于北冰洋海域的LNG船必须具备抵抗冰山撞击的能力。针对LNG船纵骨架式和横骨架式冰区结构加强方案,开展比较分析,评价LNG船舷侧抵抗冰山撞击的能力。根据CCS规范对LNG船舷侧分别进行纵骨架式与横骨架式冰区加强设计。利用有限元数值仿真技术和LS_DYNA软件,模拟冰山撞击LNG船舷侧场景,得到船体结构变形、碰撞力和能量吸收等结果。研究发现:横骨架式在相邻强横肋位之间结构较弱,纵骨架式表现出更好的抗冰撞击性能;冰带加强骨材在抵抗冰载荷过程中发挥重要作用;在提高抗冰撞击性能的前提下,纵骨架式加强方案拥有更佳的经济效益。  相似文献   

2.
圆管式夹层板是一种新型船舶防护结构形式,通过在单层壳舷侧填充圆管式夹层以提高船体的耐撞性能。由于舷侧夹层结构在增加船体耐撞性的同时增加了船体质量,因此需要对圆管式夹层板进行尺度优化,在确保舷侧耐撞性增强的同时,有效控制船体质量增量。以船首与船侧相撞为例,综合考虑撞深、能量吸收、极限撞击速度和质量,提出一种耐撞性优化指标。基于正交试验设计、BP(Back Propagation)神经网络和遗传算法,得出最优的夹层板尺度,并利用有限元仿真软件MSC/Dytran对船舶碰撞进行数值仿真,从而确定最优的耐撞性舷侧结构设计。结果表明,优化后的舷侧圆管式夹层板结构在提高耐撞性能的同时能较好控制船体质量增量。研究成果在夹层板舷侧结构耐撞性能优化方面具有重要的作用,也为其他新型舷侧结构耐撞性能优化设计提供了参考。  相似文献   

3.
船体结构耐撞性优化设计的主要目的是在船舶碰撞研究的基础上对结构进行优化设计,提高船体结构的耐撞性能。基于正交试验设计、BP神经网络和遗传算法,形成了船体结构耐撞性能优化设计方法。提出了一种耐撞性综合指标,并以此指标作为优化的目标函数,以结构质量为约束条件,利用MSC/Dytran有限元软件对船舶碰撞进行数值仿真,完成对某船舷侧结构进行耐撞性优化设计,结果表明优化过后结构耐撞性能有较大提高,这为结构耐撞性能优化设计提供了一种新的思路和方法。  相似文献   

4.
《舰船科学技术》2015,(9):16-20
CCS给出了冰区航行船舶横向和纵向2种结构加强方案。本文利用有限元软件LS-DYNA,模拟肩部采取不同加强方案的船舶与冰体碰撞,对比研究不同碰撞方案下船体结构响应的差异,结果显示横向加强方案具有更强的耐撞性能。所得结论对于选择冰区船舶结构加强方案具有重要意义。  相似文献   

5.
本文介绍了船-冰碰撞数值仿真中涉及的关键技术,以船舶肩部舷侧区域与棱角冰发生碰撞作为计算工况,对所选船舶舷侧与冰体碰撞进行数值仿真,根据舷侧响应特征指出其进行结构加强的必要性.由此提出几种舷侧常规加强方案,通过分析各自与冰体接触区域船体外板上受到的平均应力以及碰撞过程中船体结构发生塑性破坏的程度,指出结构仍然存在的问题以及后续加强的方向.最后,设计了2种新型舷侧结构并对其进行优化,验证了其具有较优的抗冰碰撞性能,得到了抗冰碰撞舷侧结构设计的相关结论.  相似文献   

6.
本文介绍了船-冰碰撞数值仿真中涉及的关键技术,以船舶肩部舷侧区域与棱角冰发生碰撞作为计算工况,对所选船舶舷侧与冰体碰撞进行数值仿真,根据舷侧响应特征指出其进行结构加强的必要性。由此提出几种舷侧常规加强方案,通过分析各自与冰体接触区域船体外板上受到的平均应力以及碰撞过程中船体结构发生塑性破坏的程度,指出结构仍然存在的问题以及后续加强的方向。最后,设计了2种新型舷侧结构并对其进行优化,验证了其具有较优的抗冰碰撞性能,得到了抗冰碰撞舷侧结构设计的相关结论。  相似文献   

7.
一种基于IFP的单壳舷侧耐撞结构   总被引:7,自引:0,他引:7  
改进船体结构耐撞性是开展船舶碰撞研究的一个主要目的.结构耐撞性设计,就是在碰撞研究的基础上,对传统的舷侧结构进行优化设计,或者设计一些具有特殊吸能元件的新型船体结构形式,来改善船舶的结构耐撞性能.目前,船舶耐撞性的研究主要集中于双层舷侧结构,单壳舷侧结构的耐撞性研究开展得较少.IFP(Improved Frame Panel)是一种先进的舷侧骨架结构,它具有良好的吸能特性和结构强度,是一种理想的能量吸收单元.本文基于IFP构建了一种新式单壳舷侧耐撞结构,并将之应用于某型护卫舰.通过仿真计算和比较研究,证明IFP可以显著提高舰船的侧向抗撞能力,是一种先进的耐撞设计思想.  相似文献   

8.
计及船体梁载荷影响的船舶舷侧结构碰撞性能   总被引:1,自引:1,他引:0  
陶亮  马骏 《中国造船》2007,48(3):80-85
以被撞船舷侧结构作为研究对象,建立了两船发生侧向对中垂直碰撞的非线性有限元模型。并以此为基础,进行了被撞船舷侧结构碰撞数值仿真研究,得到了能量-碰撞船位移以及碰撞力-碰撞船位移的关系曲线;研究了预载荷对船舶舷侧结构碰撞性能的影响。数值仿真结果表明,由于船体梁载荷的作用,船舶结构碰撞性能受到一定程度的削弱。  相似文献   

9.
船舶碰撞通常导致船舱进水或变形、海洋环境污染以及人员伤亡等后果.为提高船舶舷侧的耐撞性,以某双壳油船舷侧为研究对象,设计一种齿型纵桁,并将其与传统舷侧结构相结合,形成一种新型舷侧结构.采用数值仿真软件建立舷侧模型,选取舷侧3个典型位置,对比新旧结构的吸能能力、碰撞力峰值和极限撞深.数值仿真结果表明:齿型纵桁舷侧结构具有较好的耐撞性.  相似文献   

10.
浮冰冲击作用下的乙烯运输船体 舷侧结构强度分析   总被引:1,自引:1,他引:0  
对无限航区的21000m3乙烯运输船舷侧结构,分别采用纵骨架式和横骨架式冰区加强设计。根据FSICR规范要求,更新舷侧冰带区域内构件尺寸,并针对艏部冰带区域内船体结构,分别建立了原始的、纵骨架式的和横骨架式的冰带结构设计有限元模型。通过强度计算,认为艏部冰带区新结构满足规范设计载荷要求。在此基础上,单独建立艏货舱冰区舷侧外板板架有限元模型,研究两种新设计形式适用的外板在更大浮冰冲击载荷作用下塑性变形。计算结果表明:纵骨架式结构外板塑性变形明显低于横骨架式。  相似文献   

11.
对无限航区的21000m3乙烯运输船舷侧结构,分别采用纵骨架式和横骨架式冰区加强设计。根据FSICR规范要求,更新舷侧冰带区域内构件尺寸,并针对艏部冰带区域内船体结构,分别建立了原始的、纵骨架式的和横骨架式的冰带结构设计有限元模型。通过强度计算,认为艏部冰带区新结构满足规范设计载荷要求。在此基础上,单独建立艏货舱冰区舷侧外板板架有限元模型,研究两种新设计形式适用的外板在更大浮冰冲击载荷作用下塑性变形。计算结果表明:纵骨架式结构外板塑性变形明显低于横骨架式。  相似文献   

12.
李宝忠 《船舶工程》2015,37(S1):17-21
为研究船舶舷侧结构的碰撞损伤过程,采用非线性动态响应分析方法,使用ANASYS/LS-DYNA显式动力分析软件,对船艏和船舷垂直碰撞过程进行数值仿真,获得了碰撞力、能量吸收和结构损伤变形的时序结果。为了分析船舶舷侧结构耐撞性能,本文对比了常见油船、新型Y型和X型舷侧结构的仿真过程,结果表明新型舷侧结构在整体的耐撞性能上优于传统的舷侧结构,承载构件的不同也会对结构的耐撞性产生很大的差异。  相似文献   

13.
单壳船舷侧结构的碰撞分析   总被引:1,自引:1,他引:0  
给出一种计算船体结构基本构件——梁、板耐撞性的简化分析方法,并将该方法应用于单壳船舷侧结构的碰撞分析。讨论了球鼻首撞击作用下单壳船舷侧结构的总体破坏模式及其渐进破坏过程,提出了计及渐进破坏过程的碰撞损伤简化计算方法。实例计算结果表明:该简化分析方法能对单壳船舷侧结构的耐撞性作出合理的预报,可应用于船舶设计阶段船体结构耐撞性能的评估。  相似文献   

14.
船舶碰撞不仅会引起船体结构的损坏,而且会造成人员和财产的重大损失。对于内河油船或化学品船还可能会造成原油或化学品的泄漏,严重污染稀缺的水资源,威胁河流周围居民的正常生活。本文从提高内河双壳油船、化学品船耐撞性能的角度讨论了双壳结构形式对舷侧结构耐撞性能的影响。采用非线性有限元软件LS-DYNA,在满足双壳舷侧结构体积不变(重量不变)的情况下,分析并讨论了内外壳板厚度、结构布置形式(纵骨大小、纵骨数量)、双壳间距对受撞船舶舷侧结构能量吸收的影响。结果表明:适当增加外壳板厚度和减小纵骨截面的尺寸能提高船舶舷侧结构耐撞性能。同时针对传统双壳结构形式中内壳板所吸收能量占结构总吸能份额较低的特点,比较了内壳板采用波纹板结构(槽形舱壁结构)替代传统的加筋板结构对提高舷侧结构的抗撞能力的影响,收到较好的效果。通过对各种设计方案的计算对比,从中得出了一些具有工程应用价值的结论,为我国制定内河双壳油船碰撞评估指南提供理论依据。  相似文献   

15.
以极地运输船舶的首部作为研究对象,建立基于流固耦合算法的船-水-冰耦合技术对三维船首与冰体碰撞的结构响应问题进行研究,成功解决了船体、冰体与流场、船体与冰体之间的耦合,考虑了碰撞过程中船体与冰体的同步损伤,并结合非线性有限元软件Ls-dyna对比分析了冰体质量、船冰碰撞角度等撞击参数的结构响应问题,分析了不同碰撞工况下船舶撞击冰体后损伤变形、碰撞力等方面的变化特征,对分析船舶与冰体碰撞的结构性能具有参考价值。  相似文献   

16.
基于折叠式夹层板船体结构耐撞性设计   总被引:3,自引:3,他引:0  
提高船体结构的耐撞性能是开展船舶碰撞与搁浅研究的主要目的,通过船体结构耐撞设计提高船舶的安全性,对常规船体结构进行优化来提高结构耐撞性能是有限的,设计新型高效的吸能单元是提高结构耐撞性能的有效途径m折叠式夹层板具有吸能好、比强高、刚度大等特性,是一种理想的能量吸收单元.引进特种吸能单元FSP设计出一种新式耐撞结构形式,分别应用于双壳、单壳舷侧结构,对其耐撞性能进行研究.通过数值仿真计算分析,证实FSP舷侧结构显著提高了单壳、双壳舷侧结构的抗撞能力,FSP结构是一种先进的耐撞结构形式.  相似文献   

17.
采用数值仿真的方法对船舶碰撞动力学过程进行仿真再现。系列仿真计算结果表明,传统的舷侧结构在耐撞性能方面存在很多缺陷,针对大型VLCC船舶设计帽形、菱形、半圆管形三种新型纵桁形式的双层舷侧结构模型,并从碰撞载荷、结构损伤变形、能量的吸收与转换等角度对此三种新型舷侧结构与传统舷侧结构的耐撞性能进行对比分析,结果表明半圆管纵桁形式的双层舷侧结构模型具有最好的耐撞性。  相似文献   

18.
一种基于内充泡沫塑料薄壁方管的单壳舷侧耐撞结构   总被引:7,自引:1,他引:6  
目前的船舶耐撞研究主要集中于双层舷侧结构,并已提出了一些有意义的耐撞性设计.军用船舶一般为单壳舷侧结构,这方面的耐撞结构研究开展得很少.本文针对军船,在研究常规舷侧结构碰撞性能的基础上,提出了一种基于内充泡沫塑料薄壁方管的单壳舷侧耐撞结构--FCT(Foam Cubie Tube)舷侧结构,它具有良好的吸能特性,是一种理想的能量吸收单元.作者对某型护卫舰的常规舷侧结构形式进行FCT耐撞设计,并对常规舷侧结构、IFP舷侧结构(另一种新式耐撞结构)及FCT舷侧结构进行了有限元仿真计算.经过比较 研究,证明FCT可以显著提高舰船的侧向抗撞能力.  相似文献   

19.
本文根据圆管碰撞能量吸收管理,提出了一种新型的LPG船舷侧耐撞结构。经与常规LPG船舷侧结构的比较表明,该新型船舶舷侧结构具有良好的耐碰撞性能,比原始型结构重量增加16.65%,但吸能增加44.3%,新型舷侧耐撞结构的新方案是一种安全可靠、方便实用的防碰撞的有效措施,图6、表3。  相似文献   

20.
采用非线性动态响应分析方法,使用ANASYS/LS-DYNA显式动力分析软件,对船首和船舷垂直碰撞过程进行数值仿真,获得了碰撞力、能量吸收和结构损伤变形的时序结果。为了分析船舶舷侧结构耐撞性能,对比了常见油船、新型Y型和X型舷侧结构的仿真过程,结果表明新型舷侧结构在整体的耐撞性能上优于传统的舷侧结构,承载构件的不同也会对结构的耐撞性产生很大的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号