首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
采用有限元分析软件SAP2000建立了某整体式斜交桥的三维结构模型,通过离散非线性弹簧单元模拟桥台-台后土以及H型钢桩-桩周土的土-结构相互作用,通过一系列双向地震作用下的非线性时程分析,研究了桩的朝向、桩周土刚度及桩头转动刚度对整体式斜交桥中H型钢桩地震响应的影响规律。研究结果表明:双向地震作用下,H型钢桩的横桥向位移显著大于纵桥向,且受桩朝向的影响更为明显,强、弱轴弯矩均呈正反双向分布,屈服面函数最大值一般位于桩顶,另一峰值则位于桩身2~4 m埋深处;钢桩绕强轴弯曲布置时,桩顶纵桥向位移相比绕弱轴弯曲时降低18.2%,但横桥向位移增大47.7%,桩顶处绕强轴弯矩增加约3.9倍,桩身反向强轴弯矩峰值降低67.0%,桩顶处绕弱轴弯矩基本不变,桩身反向弱轴弯矩峰值增加约1.0倍;随着桩周土刚度的降低,桩顶纵、横桥向位移增大,桩顶屈服面函数值降低,而桩身屈服面函数峰值增加,桩身更不易保持弹性;当桩头采用柔性连接时,桩顶纵、横桥向位移均增大,桩顶屈服面函数值降低,有利于保护桩头,而桩身屈服面函数峰值增加,当桩头转动刚度过低时甚至可能大于桩顶刚度,导致桩身在罕遇地震作用下先进入塑性。   相似文献   

2.
H型钢桩目前在香港地区广泛使用。通过对H型钢桩静载试验结果的分析,讨论了H型钢桩承载力性状和荷载传递特征、侧摩阻力和端阻力的分布特性,应用了动力测试CASE法和CAPWAP分析法对单桩极限承载力作出估算,对静载试验和动力测试结果进行分析比较,并对比较结果进行了探讨。  相似文献   

3.
双排抗滑桩承载机理及土拱效应模型试验研究   总被引:2,自引:0,他引:2  
设计并完成小比例边坡双排抗滑桩室内模型试验,通过在模型桩桩身粘贴应变片及在部分桩周土体内埋置土压力盒,量测加载过程中桩身的内力与桩周土体抗力的分布情况,进一步分析探讨不同推力荷载条件下双排抗滑桩结构的承载机理和内力位移特性。结果表明:桩顶水平位移与推力的变化曲线呈凹曲线状,随着推力的增加,水平位移加速增大;前后排桩的弯矩分布曲线呈S交变性,且桩顶弯矩值不再为零,随着水平推力荷载的增加,桩顶弯矩越来越大,桩身的正负弯矩绝对值也越来越大;双排抗滑桩在抵抗水平推力荷载时,桩间会产生明显土拱效应,出现弧形的裂缝。这些结论可为双排抗滑桩的理论研究与工程设计提供有益参考。  相似文献   

4.
为研究大直径管桩-钢管复合桩基承载特性,依托温州港状元岙港区码头二期工程桩基建设,选取工程桩S1、S2为试验桩,分别开展了竖向静载和水平静载原位试验,测得竖向静载的截面应变值ε,及水平静载下桩顶水平位移Y、桩顶转角θ;计算了竖向静载时不同截面桩身轴力Qaxial、桩端阻力Qpu、桩侧摩阻力Qs,及水平静载时泥面处桩的水平位移Y0、泥面处桩的转角θ0;分析了竖向静载及水平静载过程中桩顶位移S随着竖向荷载Q的改变而变化的规律,以及竖向刚性系数K、不同截面桩身轴力Qaxial和桩侧摩阻力Qs的变化规律.研究表明:竖向静载下桩顶荷载-桩顶位移(Q-S)曲线呈缓变形;试桩S1、S2竖向承载力均不小于10500 kN,满足工程设计要求;桩侧摩阻力Qs随桩入土深度z的增加而逐渐发挥,其分布形式呈"驼峰型";在最大竖向静载Qmax下,试桩S1、S2桩端荷载分担比分别为9.55%、8.45%,均属端承摩擦桩;在水平静载H下,试桩S1、S2的水平承载力均满足设计要求;试桩S1、S2的桩身最大弯矩Mmax分别为820、1038 kN·m,均出现在泥面以下3.0 m附近.大直径管桩-钢管复合桩能满足项目工程要求.  相似文献   

5.
通过对冲孔灌注桩和旋挖灌注桩桩顶、桩端沉降量静载试验资料及桩身应力应变测试资料的分析,得出桩身荷载传递机理及不同施工工艺在不同荷载水平下桩的受力性状差异.并就影响桩侧摩阻力的因素进行深入探讨.这一研究表明:桩周土的性质、桩土相对位移、桩端沉渣、成孔时间、护壁清孔方式及加载反力装置均会对单桩极限承载力产生重要影响.  相似文献   

6.
利用有限元分析方法对盾构开挖对3×3群桩的沉降、变形及桩侧摩阻力的影响进行研究.当桩与隧道中心距离相同时,由于桩间土中附加应力叠加(群桩效应)的影响,隧道开挖引起的群桩中基桩的桩顶沉降大于单桩桩顶沉降;隧道开挖会引起群桩的竖向荷载在各基桩中重新分配,一般来说,中间桩的桩顶竖向荷载增加,边桩的桩顶竖向荷载减小;隧道开挖引起的群桩中各基桩的桩顶沉降主要取决于三个因素:基桩与隧道中心的距离、群桩效应的影响及基桩桩顶荷载的重分配;群桩基桩的水平位移主要取决于该基桩与隧道中心的距离,同时,由于承台的连接作用群桩中其它桩会增加或减小该基桩侧移;隧道开挖过程中桩侧摩阻力主要受到下面因素的影响:桩间土中附加应力叠加(群桩效应)、前排桩对中间桩及后排桩的桩侧摩阻力的保护(屏蔽效应)、桩顶荷载的重分配及桩身变形.  相似文献   

7.
利用有限元分析方法对盾构开挖对3×3群桩的沉降、变形及桩侧摩阻力的影响进行研究.当桩与隧道中心距离相同时,由于桩间土中附加应力叠加(群桩效应)的影响,隧道开挖引起的群桩中基桩的桩顶沉降大于单桩桩顶沉降;隧道开挖会引起群桩的竖向荷载在各基桩中重新分配,一般来说,中间桩的桩顶竖向荷载增加,边桩的桩顶竖向荷载减小;隧道开挖引起的群桩中各基桩的桩顶沉降主要取决于三个因素:基桩与隧道中心的距离、群桩效应的影响及基桩桩顶荷载的重分配;群桩基桩的水平位移主要取决于该基桩与隧道中心的距离,同时,由于承台的连接作用群桩中其它桩会增加或减小该基桩侧移;隧道开挖过程中桩侧摩阻力主要受到下面因素的影响:桩间土中附加应力叠加(群桩效应)、前排桩对中间桩及后排桩的桩侧摩阻力的保护(屏蔽效应)、桩顶荷载的重分配及桩身变形.  相似文献   

8.
通过室内模型试验,研究了桩-桶基础的水平承载性能.采用无标点数字照相变形量测技术对水平承载桩-桶基础的半模试验进行观测.分析地基土体位移场,得到土体变形的渐进性变化过程,土体的剪切带是在变形场边界的土体应变软化产生的,水平荷载作用下z在基础两侧地基土中形成主动区和被动区.水平荷载作用下桩-桶基础的桩身存在反弯点,破坏荷载时反弯点离桩底的高度约为埋置深度的1/4处.剪切变形场分析的土体破坏面和实测土体破裂面形状一致.桩-桶基础的极限水平承载力由桶顶以上土体、桶内土体与桶下土结合部位、桶侧土体的抗剪强度在水平方向投影的集合,和桶下桩周土水平抗力组成.根据数学拟合的土体破坏曲面,建立桩-桶基础水平极限承载力计算式.  相似文献   

9.
为研究整体式桥台无缝桥中埋入式H型钢桩-桥台节点的受弯性能,通过建立节点的有限元模型,分析了桥台厚度、混凝土强度、钢桩朝向、埋深比、钢材强度和轴压比6个参数对节点受弯承载力和破坏模式的影响,并在此基础上,针对不同的破坏模式提出了节点受弯模型与承载力计算公式。研究结果表明:绕钢桩强轴弯曲的节点在埋深比小于2.0时发生桥台混凝土承压破坏,增大钢桩埋深比和混凝土强度等级可有效提高节点受弯承载力;绕钢桩强轴弯曲的节点在埋深比大于2.0时,或绕钢桩弱轴弯曲的节点在埋深比大于1.0时,发生钢桩屈服破坏,提高钢桩的钢材强度等级可提高节点受弯承载力;随着轴压比的增大,发生绕钢桩强轴屈服破坏的节点的受弯承载力明显降低,但轴压比对发生桥台混凝土承压破坏或冲切破坏的节点的受弯承载力的影响可以忽略;提出的节点受弯承载力计算方法能较为准确地预测不同破坏模式的埋入式H型钢桩-混凝土桥台节点的受弯承载力,计算值与有限元结果比值的均值和计算值与试验结果比值的均值为分别为0.981和0.941,因此,可用于该类型节点的受弯承载力计算和破坏模式分析;建议钢桩埋深不少于2.0倍桩宽与混凝土桥台厚度大于2.4倍桩宽,这样可有效避免桥台混凝土的承压破坏和桥台边缘混凝土的冲切破坏。   相似文献   

10.
以某滑坡工点作为堆载试验场地进行小直径钢管排桩原型结构堆载破坏试验,获取了不同组合结构的水平荷载-位移曲线。加载试验中,钢管排桩在荷载增大至一定限值,变形曲线出现拐点,达极限破坏时,桩顶出现大变形,桩间土局部溜出破坏,但钢管桩未发生整体垮塌或溃屈破坏。按照慢速维持荷载法,确定了两排桩、三排桩不同间排距结构的水平极限承载能力。试验表明:钢管排桩通过桩体与桩间土相互作用形成复合承载体系,承载能力较不考虑桩间土的排架结构大幅提高,其承载能力影响因素包括排架结构强度、钢管桩排数及合理间排距等。  相似文献   

11.
采用SAP2000软件建立了某整体式斜交连续梁桥的三维有限元模型,通过非线性时程分析,研究了整体式斜交连续梁桥在地震作用下的受力特性及抗震性能,并探究了跨数、斜交角、台后土密实度和墩高等主要结构及基础参数对该类桥梁地震响应的影响。研究结果表明:整体式斜交连续梁桥中震害变形主要集中于桥台桩,桩顶截面在峰值加速度为0.4g的地震作用下形成塑性铰时,墩顶支座无破坏,且桥墩几乎无损伤;桥台桩位移及纵桥向弯矩的最大值均位于桩顶,而横桥向弯矩最大值可能位于桩顶或桩身反向弯矩峰值处;随着跨数的增加,整体式斜交连续梁桥的地震响应尤其是墩顶支座剪切应变及桥面转角明显增大,当跨数由单跨增加到4跨时,地震响应均增加了1倍以上,墩顶支座剪切应变甚至增加近2倍;随着斜交角的增加,桩顶纵桥向位移、桩顶截面屈服面函数值及中跨转角明显增大,斜交角为60°时,桩顶纵桥向位移增加了3倍以上,斜交角为45°时,墩顶支座剪切应变最大;随着台后土密实度的增加,各构件纵桥向位移响应与墩顶支座的纵向剪切变形降低,桥台桩、桥墩纵桥向位移及墩顶支座纵向剪切变形分别减小了12.9%、9.3%和9.5%;随着墩高的增加,墩顶位移明显增加,而支座剪切应变明显降低,但桩顶位移及桩顶截面屈服面函数值几乎不变;当墩高从4 m增大到9 m时,墩顶漂移率增大了42.1%,墩顶支座剪切应变减小了57.5%。   相似文献   

12.
依托铺前大桥实体工程, 基于人工质量模型和桩-土惯性相互作用机理, 通过振动台模型试验, 选用叠层剪切式模型箱, 模拟了自由场在地震作用下的振动反应, 分析了0.15g ~0.60g (g为重力加速度) 地震动强度下大直径桥梁嵌岩桩基础加速度、相对位移、弯矩等响应特性和损伤情况等。研究结果表明: 桩基础加速度峰值从桩底至桩顶呈增大趋势, 加速度放大系数随地震动强度的增大逐渐减小, 输入地震波为0.55g 时, 桩顶加速度放大系数趋于稳定值1.34;桩顶加速度时程响应频率低于桩底加速度时程响应频率, 上部覆盖层对地震波的放大作用和滤波效应明显; 随着地震动强度的增大, 桩顶相对位移峰值近似呈线性增大, 在0.15g ~0.60g 地震动强度下, 桩顶相对位移峰值变化范围为1.97~6.73mm; 桩基础弯矩沿桩长呈“3”字形变化, 上部软硬土层分界处和基岩面附近弯矩达到峰值, 并随地震动强度的增大而增大, 地震动强度为0.50g 时达190.9kN·m, 超过桩身抗弯承载力; 桩基础基频随地震动强度的增大呈整体降低趋势, 在0.50g 地震动强度下, 其基频较0.35g 地震动强度下低50.1%, 桩基础产生损伤; 桩顶与承台连接处、上部覆盖软硬土层界面和基岩面附近桩身在地震作用下易产生裂缝, 桥梁桩基础抗震设计时应着重考虑。   相似文献   

13.
为研究强震和温度作用下,整体桥台产生的水平往复大位移对桥台与台后填土相互作用的影响,进行了整体桥台-H形钢桩-土相互作用拟静力试验,并基于试验结果研究了大位移作用下整体桥台后土压力的分布规律;根据台后土压力分布,提出了台后土压力合力作用点位置与加载位移之间的关系式,并在现有研究的基础上给出了改进的整体桥台后土压力计算方法。研究结果表明:正向加载(桥台挤压台后土)时,台后各处土压力随加载位移的增加先增大后减小;台背处和台后20%桥台高度处土压力受桥台位移的影响更大,沿深度方向呈梯形分布;台背处土压力分布中,由于台底H形钢桩的约束,最大土压力位于入土深度0.875 m处,台底位置的土压力则略有减小;台后60%桥台高度和1.4倍桥台高度处土压力受桥台位移影响较小,沿深度方向呈三角形分布;负向加载(桥台背离台后土)时,台后土压力沿深度方向呈三角形分布,且台后各处土压力与加载位移不相关,其值相对于正向加载时可忽略;水平往复大位移作用下,整体桥台后土会产生脱空现象,脱空范围超过桥台高度的37.5%;台后土压力沿纵桥向呈指数型衰减,且相比小位移作用下衰减得更快;台后土压力合力作用点位置随加载位移的增大而逐渐降低,且台后土压力系数与加载位移具有明显的非线性关系,呈现先增大后减小的规律;现有土压力计算方法未考虑桥台位移的影响或认为台后土压力在桥台发生小位移时随桥台位移的增大而增大,发生大位移时则基本不变;提出的土压力拟合公式的判定系数为0.92,计算值与试验值的相对误差为6.2%,可作为现有土压力计算方法的有益补充。   相似文献   

14.
地基对加筋土挡墙影响的对比分析   总被引:1,自引:1,他引:0  
为了分析地基对加筋土挡墙的影响,开展了两组离心模型试验. 首先根据相似理论确定试验相似比尺,其次根据相似比尺选取试验材料并制作模型进而开展砂土与黏土地基工况时的模型试验,最后采集并分析了填筑期与施工期的墙体位移、水平土压力、基底竖向应力与筋材应变. 结果表明:砂土地基时墙体的位移最大值位于结构的上部;黏土地基填筑阶段时墙体的位移约为砂土地基时的3倍并且加载阶段时墙底的位移可达30 cm;水平土压力系数沿着高度方向非线性分布,同时加载期的数值小于填筑期时的值;黏土地基时的墙背水平土压力系数小于砂土地基时的数值;与砂土地基时相比,黏土地基的变形可以减小面板底部竖向应力集中的趋势,使其竖向应力与自重应力比值接近1.0;与砂土地基时筋材拉力相比,由于黏土地基时墙体位移较大,因此此时底部筋材应力可增大3倍,同时筋材应变最大值出现的位置相对更远离墙面.   相似文献   

15.
In order to research the shear behavior of glass fiber reinforced polymer (GFRP) reinforced concrete beam with circular cross section, based on the test results of 36 concrete beams subjected to four-point loading up to failure, the shear capacity and mechanical properties of deformation were analyzed comparatively between GFRP reinforced concrete (GFRP-RC) beams and steel reinforced concrete (steel-RC) beams. Furthermore, influencing factors of shear capacity of GFRP-RC beam with circular cross section were also investigated. The test results indicate that the failure modes of GFRP-RC and steel-RC beams are the same, but the crack patterns are slightly different. And, the shear capacity of GFRP-RC beam firstly increases with the reduction of shear span ratio, and then decreases. In addition, it was found that the influencing coefficient of GFRP on concrete increases with shear span ratio reducing.  相似文献   

16.
为研究岩溶区桥梁桩基的承载特性, 依托平顶山市西斜立交桥实体工程, 进行了桩基静载试验, 通过在桩端和桩顶布设应变传感器和位移计, 测得了桩身内力, 分析了岩溶区桥梁桩顶荷载(Q)-沉降(s)规律; 考虑现有桩基设计的局限性, 结合静载试验结果, 采用不同函数模型预测了单桩竖向极限承载力; 基于岩-桩体系宽梁力学模型和溶洞顶板拉-弯破坏模式, 探讨了桩基嵌岩深度的计算方法, 提出了一种适于岩溶区桥梁桩基嵌岩深度的优化方法。研究结果表明: 各级荷载作用下桩基Q-s曲线呈缓变型发展, 当桩顶荷载较小时, 曲线基本呈线性, 当桩顶荷载大于6 000 kN时, 曲线逐渐变为非线性, 虽然桩已嵌入灰岩较深, 但仍表现为典型的摩擦桩承载性状, 当加载到8 400 kN时, 桩顶沉降为3.69 mm, 远小于0.03D (D为桩径) 或40mm的破坏标准, 桩端阻力为122.9 kN, 仅占桩顶荷载的1.6%, 桩的承载力尚有富余; 在静载试验全过程中, 桩的受力状态处于Kulhawy理论的第1阶段, 桩侧阻力和桩端阻力同步发挥; 双曲线模型拟合精度在0.99以上且预测值偏安全, 建议在同类工程中优先考虑采用; 在同时满足溶洞顶板安全厚度和桩基承载力与稳定性要求的前提下, 采用提出的计算方法可使桩的嵌岩深度减小2.4 m。   相似文献   

17.
为了分析静压沉桩过程对邻近埋地管道性能的影响,基于位移贯入法模拟静压沉桩的二维有限元数值方法,建立了桩-土、管-土接触面并在桩顶施加位移荷载实现动态压桩过程,并综合分析了压桩过程中沉桩深度、桩径大小、管道中心与桩体中心的水平距离以及管道的埋深等因素对管道变形与力学性能的影响.研究结果表明:同等条件下,增加管-桩水平距离,管道水平位移、径向变形和管周应力相应减小,近桩侧管周土体的最大水平应力约为不设置管道时的1.5倍;随着沉桩深度增大,初始使管道产生明显水平位移的临界沉桩深度约为管道上方1 m处,随后管道水平位移呈现先增大后略微减小,并最终趋于稳定的趋势,且当沉桩深度为2倍埋深时管道水平位移最大;管道埋深越大,管道受沉桩挤土效应的影响越明显;当埋深为5倍管径时,沉桩桩径减少25%时管道最大水平位移减少27.8%,表明减小桩径可显著降低沉桩对周边管道性能的影响.   相似文献   

18.
结合挤扩支盘桩和土体的实际参数,基于Marc有限元软件,采用六面体单元模拟挤扩支盘桩和桩周土体,建立了桩-土相互作用的三维空间模型,分析了竖向荷载作用下挤扩支盘桩和桩周土体的位移变化规律、桩身轴力传递规律及支盘端承力的变化规律,并与同直径等截面桩的极限承载力进行了对比.研究结果表明:在竖向荷载的作用下,桩顶的位移最大,离桩越远,土体的水平位移越小;桩身轴力在支盘处的变化较大,支盘承受了大部分荷载;各支盘端承力不能平均分配,应充分考虑各个支盘的位置和支盘端土体的力学特性,设计合理的支盘间距,才能最大限度地提高支盘桩的承载能力;挤扩支盘桩的极限承载力约为同直径等截面桩的2倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号