首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究AEB的介入对车辆被动安全性的影响,本文中通过志愿者实车测试,借助驾驶机器人和车载高清摄像机,完成了24组不同制动减速度和不同试验速度下驾驶员的运动姿态采集,分析了AEB制动过程中驾驶员的前倾位移量的变化规律。结果表明,在相同制动初始速度下,驾驶员位移量随着制动减速度的增加而加大;当制动减速度较小时,制动初速度对驾驶员位移量的影响不大;当制动减速度较大时,随着制动初速度的增加,驾驶员的位移量波动较大,没有明显的规律。借助THUMS人体模型,通过仿真对比分析正撞工况下有无AEB作用驾驶员的伤害情况,得出了在现有的被动安全开发策略下,AEB的作用会加剧驾驶员的损伤的结论。  相似文献   

2.
随着汽车安全性能要求越来越高,自动紧急制动系统(Autonomous Emergency Braking,AEB)等主动安全配置在汽车上应用越来越广泛。本文针对碰撞前车辆AEB功能的启用对汽车被动安全阶段(100%正面碰撞,FRB)假人离位及损伤可能产生的影响进行探索研究。研究结果表明:AEB启动自动紧急制动功能,乘员假人的头部、颈部、胸部、骨盆部位会相对车辆有一定的前倾运动。并且车辆AEB自动紧急制动功能启动的情况下发生100%正面碰撞,驾驶员损伤值的增高均早于碰撞前车辆未配备AEB功能车辆驾驶员的损伤值,且最高损伤值小于碰撞前车辆未配备AEB功能车辆驾驶员的损伤值,对于骨盆部位则影响不大。碰撞前AEB自动紧急制动系统功能的启用会导致假人有一定的前倾离位,但不一定导致碰撞后假人损伤最高值的增大。  相似文献   

3.
针对基于碰撞时间(TTC)的传统自动紧急制动(AEB)策略未考虑自车车速的局限性,提出了一种考虑车速的动态碰撞时间阈值模型,设计了基于动态碰撞时间阈值的AEB控制策略。为保证制动过程的舒适性与安全性,确定了两级制动策略并对减速度的变化率进行限制,利用PI控制算法完成车辆减速度控制,并通过仿真确定不同车速下的TTC阈值,建立动态碰撞时间阈值模型。硬件在环仿真结果表明:在保证舒适性的前提下,相比于传统AEB策略,所设计的AEB策略避撞成功率提高了47.6%,具有更优的综合性能。  相似文献   

4.
对于汽车制动后发生的碰撞工况,乘员前倾将会增加人体损伤风险。本文进行了汽车预碰撞制动下乘员离位影响及参数优化分析研究。通过实车制动试验得到车辆在不同制动工况下的乘员颈部前向位移量分布区间;建立了MADYMO主动人体仿真模型,采用变量分析法研究不同制动波形下乘员离位特征;运用正交设计方法进行滑台碰撞试验,得到乘员离位因子对乘员碰撞损伤影响;建立乘员响应面模型,采用中心复合试验设计(Central composite design)方法,研究了主动式安全带参数与乘员离位位移之间的相关性,通过优化设计,得到了最优参数组合。  相似文献   

5.
为提高车辆自动紧急制动(AEB)系统的避撞性能,提出了一种考虑前车制动意图的AEB策略及其测试评价方法。通过搭建“PreScan+Simulink+驾驶模拟器”联合仿真平台采集驾驶人制动数据,基于K-均值(K-Means)聚类方法对制动意图进行分类,采用滑动时间窗口提取了意图识别模型训练数据集;通过双层隐马尔可夫模型识别前车制动意图,主车根据不同制动意图计算临界安全距离阈值并制定避撞控制策略;建立PreScan+Simulink虚拟仿真测试环境,提出了基于层次分析法的AEB策略综合评价方法,通过与4种典型AEB控制模型进行对比,验证了所提出方法在不同制动程度场景下均可及时触发制动以避免碰撞,同时可减少过早制动造成的驾驶不适感。  相似文献   

6.
针对自动紧急制动系统(AEB)导致乘员在碰撞前出现身体前倾和离位的现象,提出了使用可逆预紧安全带可以改善该现象,并且研究了在AEB和可逆预紧的联合作用下对不同坐姿乘员的保护效果。建立了某车型驾驶员侧包括正常坐姿和四种离位坐姿的约束系统仿真模型,并进行了验证。以五种坐姿乘员为研究对象,分别对比无AEB无可逆预紧,有AEB无可逆预紧,以及有AEB有可逆预紧三种情况下乘员的位移和损伤。结果表明:在只有AEB的作用下,碰撞发生后会增加乘员的离位,当初始坐姿为离位状态时更加严重,导致局部损伤增加,尤其是胸部损伤。在AEB和可逆预紧的联合作用下,各种坐姿下由AEB导致的离位得到改善,对于前移直立坐姿OOP02和左倾坐姿OOP03还能起到纠正初始离位的作用,各部位损伤指标和损伤风险也明显降低。  相似文献   

7.
本文首先利用AMESim软件针对某轻型载货汽车所采用的双膜片弹簧真空助力制动系统建立了仿真模型,包括制动踏板、真空助力器、制动主缸、制动管路及制动器,并以试验数据为参照验证了仿真模型的有效性。在此基础上,对制动系统进行了静态和动态仿真研究,分析了制动踏板位移与制动力、踏板位移与制动管路油压、踏板位移与制动减速度及踏板力与制动减速度之间的关系,为优化该车制动系统提升制动踏板感觉创造了条件。  相似文献   

8.
道路交通事故中车辆的碰撞方向通常呈一定角度。本文以某车型18°斜角滑台碰撞试验为例,分析了前排不同体位乘员各部位的损伤。结果显示:除大腿力外,50th假人其它部位的损伤指标均高于95th假人和5th假人,即前排乘员在相同斜角度碰撞工况条件下,中等身材乘员的上半身损伤较为严重,且95th假人各部位损伤指标曲线均迟于50th假人和5th假人;95th假人的大腿力损伤值高于50th假人和5th假人,即在相同斜角度碰撞工况条件下,较大身材乘员的下半身损伤风险较大。  相似文献   

9.
基于美国FMVSS208法规中对离位测试的要求,对某轿车进行了驾驶员侧第5百分位女性假人静态离位测试。测试结果显示,乘员颈部伤害严重超标,不能满足法规要求。引入颈部作用力分解法,在对假人颈部伤害进行分析的基础上提出优化策略,并进行试验验证。验证结果表明,该车满足FMVSS208法规要求,优化设计提升了该车型乘员离位保护性能。  相似文献   

10.
4主、从动滚筒高度差由于日本模式反力式制动台的制动力采样判别方式不同于欧洲模式反力式制动台,没有第三滚筒,因此,在结构上有安装举升装置的空间,而欧洲模式反力式制动台装有第三滚筒,无法再加装举升装置,所以采取加高后滚筒的方式以便于出车,同时兼有防止被检车辆后  相似文献   

11.
主动控制卷收器(ACR)能改善乘员的离位位移并降低二次碰撞的风险。为探究制动工况下ACR对乘员的影响,首先进行志愿者实车道路试验和试验数据的乘员运动响应分析,并建立了包括主动人体模型的仿真模型。模型对标后搭建Kriging近似模型并采用NSGA-Ⅱ算法进行ACR参数优化。结果表明:优化后头部质心和第一胸椎(T1)的离位量分别减小了55%和73.44%,且回弹阶段各部位加速度明显减小,预紧力和乘员离位量呈负相关趋势,且与制动前触发相比,制动后触发ACR时,预紧时间的变化对乘员离位的影响较大。  相似文献   

12.
为了更快地进行汽车安全部件的开发和验证,滑台试验在汽车被动安全开发中的应用越来越多.文章进行了多次减速滑台模拟试验,根据试验采集到加速度波形曲线的峰值和斜率等,结果表明,试验速度越快,加速度曲线上升斜率越大;试验速度相同时,钢筋摆放数量越多,加速度曲线上升斜率越大.利用减速台车模拟试验装置可以复现鞭打测试工况,指导试验人员在试验前快速准备并完成滑台搭建.  相似文献   

13.
针对标准修订后纯电动汽车新工况下续驶里程缩减问题,提出优化滚动阻力、制动拖滞力、空气阻力三种方案,并开展道路滑行试验和仿真分析,有效提升续驶里程。  相似文献   

14.
为了提高儿童乘员在自动驾驶汽车中的碰撞安全性,提出在正面碰撞发生前主动将不同座椅朝向的乘员旋转至背向碰撞方向(180°方向)的策略,通过改变人体受力方向,将不同座椅朝向乘员的正面碰撞形式转化为标准的追尾碰撞形式,从而提高自动驾驶车辆中儿童乘员的碰撞安全性。首先,通过正面碰撞假人试验对THUMS 10岁儿童乘员台车模型的有效性进行验证;然后,基于4种不同座椅朝向(0°、90°、135°和180°),利用THUMS 10岁儿童乘员模型进行正面碰撞仿真试验,发现180°座椅朝向儿童乘员损伤风险最小,因此,180°座椅朝向被确定为相对安全的座椅朝向;最后,模拟200 ms内将座椅旋转±45°和300 ms内将座椅旋转±90°以及分别在0 ms和100 ms时间延迟后引入碰撞的试验过程,研究座椅旋转过程本身以及先旋转后碰撞策略下的乘员损伤风险。研究结果表明:200 ms内将儿童乘员旋转±45°和300 ms内将儿童乘员旋转±90°,不引起额外人体损伤;碰撞时刻的延迟所造成的儿童乘员姿态的变化,会导致儿童乘员在碰撞过程中产生不同的运动学响应和损伤风险;在无碰撞时刻延时的情况下,先旋转后碰撞的策略可...  相似文献   

15.
我国商用车AEB性能要求和试验方法标准的发布,推动了AEB在商用车领域的发展与应用。本文针对半挂汽车列车制动距离长、质心高等特点,结合驾驶员紧急制动的经验,提出了一种基于BP神经网络预测碰撞时间TTC的AEB控制策略。首先,设计了上层控制器,基于不同驾驶员在不同紧急制动场景下碰撞时间的数据,利用BP神经网络算法得到预测模型,从而计算出触发AEB系统的预警时间阈值和紧急制动时间阈值;再以前车与本车的相对距离、相对速度和前车的减速度为输入,通过模糊控制规则得到本车期望的减速度;接着,设计了下层控制器,采用期望减速度前馈控制和减速度偏差PID反馈控制相结合的方式,得到各车轮所需的轮缸制动压力;并基于滑移率滑模控制防止车轮抱死,提高紧急制动时的安全性、舒适性和横摆稳定性。最后,在TruckSim中建立CCRb、CCRm、CCRs 3种测试场景,对控制策略进行了验证。结果表明,本文所提出的控制策略能有效避免碰撞的发生,为半挂汽车列车AEB系统的设计和研究提供了理论依据。  相似文献   

16.
为提升汽车的主动安全,对车辆自动紧急制动系统控制策略进行研究。利用分层控制的思想对控制策略进行建模,上层控制器为对车辆制动减速度进行决策的预碰撞时间模型,根据汽车追尾事故深度调查的驾驶员紧急制动数据分析制动系统的制动减速度,在考虑舒适性的条件下确定预碰撞时间阈值。下层控制器按照上层控制器输出的制动减速度,分析车辆轮胎模型和制动系统的关系,通过PID控制调节制动压力对车辆进行控制。在安全评价规程标准工况下验证控制策略的可靠性,通过追尾事故场景的重建来验证控制策略的有效性。仿真结果表明:设计的控制策略在相对车速65km/h以内时能有效避撞,而高于65km/h时能最大程度地降低碰撞车速,减小伤害。  相似文献   

17.
<正>《C-NCAP管理规则(2015年版)》已经正式发布,与《C-NCAP管理规则(2012年版)》相比在以下方面进行了改进:增加了对两门两座车辆的评价说明;增加了自愿申请评价车型配置选取的要求;取消了碰撞试验中关于假人胸部3ms加速度的考核指标;增加了碰撞试验中关于假人胸部粘性指标的考核;量化了碰撞试验中关于假人下潜的判定标准;修改了鞭打试验中对于上颈部和下颈部得分的计算方法;修改了鞭打试验中座椅靠背动态张角限值;修改了鞭打试验最终得分计算方法;  相似文献   

18.
针对当前电子液压主动制动系统保压时间短、响应慢和控制算法实用性差的问题,提出了一种改进的系统及其控制算法。在主缸和ABS或ESP之间的双管路上分别增加了两个常闭增压阀、减压阀和自锁电磁阀,取消了梭阀,使系统保留了双管路安全设计,实现了掉电保压,同时保证了系统在人工制动模式下的有效性。通过高压储能、双路增压和预制动,缩短了系统响应时间。采用基于距离和减速度的双闭环控制,提高了控制算法的实用性。经过测试,双管路上10 MPa 建压时间为170 ms,控制精度±0.15 MPa;9 m/s2减速度响应时间为180 ms,调节精度±0.1 m/s2;最小安全距离控制在1 ~ 2 m内。结果表明,该系统可以实现任意长时间保压,并且响应较快。控制算法既保证了制动平顺性,同时也提高了行车安全性和道路行车效率。  相似文献   

19.
为了弥补现有汽车避撞控制策略以及碰撞风险评价指标单一的不足,提出转向和制动协调的主动避撞控制系统。首先规划了五次多项式换道路径,在对其理论分析的基础上得到转向临界避撞距离和与目标车道车辆的安全距离约束。其次,考虑道路附着系数和系统延迟的影响,基于制动过程给出制动临界避撞距离,并以纵向行驶安全系数ξ和碰撞时间倒数T-1TC划分安全行驶区域,利用驾驶人实车跟车数据标定稳态跟随/定速巡航区域的阈值。随后,通过转向/制动临界避撞距离的对比给出2种避撞方式的安全收益范围。最后搭建Simulink/CarSim联合仿真模型,并对其进行不同初始条件下的避撞仿真试验。研究结果表明:转向操作在制动距离不足时仍是有效的;当主车高速近距离接近静止前车时,主车可以顺利采取转向换道动作,而常规ACC系统在2.5 s处的车间相对距离为-0.76 m,事实上已经发生了碰撞;当相邻车道前车与主车纵向间距不满足换道安全距离约束时,避撞控制系统进入紧急制动模式,最大制动减速度达到-0.8gg为重力加速度),实际最小车间距为5.1 m;通过转向和制动的协调动作,充分发挥了车辆的避撞潜力;ξT-1TC指标的融合,可以更好地评估碰撞风险并实现不同控制模式的转换,在保证行车安全的同时可避免过分制动给乘客造成的紧张感。  相似文献   

20.
为了有效降低长大下坡路段重型载货汽车行车制动器的使用频率和驾驶强度,基于持续制动匹配等级和广义生长剪枝径向基函数(GGAP-RBF)减速度估计模型提出持续制动匹配控制策略。首先以重型载货汽车为研究对象,基于发动机制动、排气制动和电涡流缓速器制动试验研究持续制动力随行驶车速的变化关系;然后以当前车速、车速差以及道路坡度作为输入参数,需求减速度作为输出参数,基于GGAP-RBF建立需求减速度估计模型;最后依据需求制动力与等级制动力差值最小原则选择持续制动匹配等级,同时分别进行定坡度工况下试验验证和变坡度工况下仿真研究以验证控制效果。结果表明:4.2%定坡度工况下,采用所提出的控制策略持续制动等级仅切换2次,比控制最优驾驶人切换少1次,速度变化基本一致;13 160m变坡度工况下,能够实现稳定减速,150m后达到预定车速,随后在60~62km·h~(-1)范围内变化,具有变坡度工况适应性强的特点;所提出的控制策略能够依靠持续制动匹配分级控制而有效降低行车制动器的使用频率和驾驶强度,实现车辆减速和稳定车速下坡行驶的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号