首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用有限元法,分析了沥青混凝土铺装层对桥面结构力学性能影响,结果表明,铺装层最大横向拉应变和拉应力均比最大纵向应变及拉应力大很多,且在沥青混凝土上表面出现;纵向最大拉应力要比横向最大拉应力明显小;铺装下层拉应力要比铺装上层拉应力小,横桥向最大拉应力比纵桥向最大拉应力要明显大;在行车荷载作用下,荷位对铺装各层剪应力影响较小。层间最大横向剪应力要比层内的最大剪应力、层间纵向最大剪应力大很多,横隔板支撑作用随着荷位不断向横隔板靠近越来越明显,这为桥面铺装设计规范化的发展积累提供了参考。  相似文献   

2.
正交异性钢桥面板第一体系受力状态对铺装层的影响   总被引:2,自引:0,他引:2  
针对不同桥型主梁上正交异性钢桥面铺装层破坏的差异,采用预应力模拟正交异性钢桥面板的第一体系应力,用有限元方法计算作用有不同预应力水平的局部正交异性钢桥面系在标准轴载作用下的力学响应。得到了局部桥面系铺装层的各控制指标值分别随预应力水平的变化关系。结果表明,第一体系纵向正应力对铺装层表面最大纵向拉应变影响显著,第一体系横向正应力对铺装层表面最大横向拉应变影响较大,而第一体系应力状态对最大肋间相对挠度的影响很小、对层间最大剪应力基本没影响。  相似文献   

3.
根据莫桑比克马普托大桥结构条件参数及桥面铺装初步设计方案,采用Abaqus有限元软件,建立钢桥面铺装局部分析模型,确定桥面系最不利荷位,并对不同工况条件下钢桥面铺装层横、纵向最大拉应变、最大纵向变形、最大剪应力等进行计算分析。结果表明,马普托大桥钢桥面最不利荷位位于跨中区域,钢桥面铺装最大拉应变达到834×10-6,最大剪应力达到0.769 MPa。  相似文献   

4.
采用美国环氧沥青、日本环氧沥青两种钢桥面铺装材料在不同厚度下分析铺装层受力变形规律。推导出铺装层最大拉应力、剪应力与弹性模量、铺装层厚度的数学模型。结果表明:铺装层最大拉应力、剪应力同铺装层弹性模量均可用多项式4次方程拟合,铺装层表面横向最大拉应力随着铺装层厚度的增加而减小,横向最大层间剪应力不随铺装层厚度增加而减小,而是在铺装层厚度处在40~50 mm之间有一个峰值,而后随厚度的增加而逐渐减小。  相似文献   

5.
为了研究开口加劲肋正交异性钢桥面铺装的力学行为特性,通过建立钢箱梁和铺装整体三维有限元模型,分析了荷载作用下铺装层最大拉应力、铺装与钢板层间最大剪应力等技术指标的变化及分布规律。得到如下结论:拉应力是导致铺装出现开裂破坏的主要原因,疲劳裂缝应沿桥梁的纵向;当以拉应力作为控制指标时,钢桥面铺装在距离横隔板0.4 m范围内受力最为不利;开口加劲肋正交异性钢桥面铺装应变水平远大于一般沥青路面;铺装对车辆荷载的应力应变响应具有很强的局部效应;铺装与钢板层间剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料。  相似文献   

6.
钢箱梁桥面铺装体系构造参数对铺装层应力的影响   总被引:1,自引:0,他引:1  
针对广州珠江黄埔大桥的结构形式,对钢箱梁桥面铺装体系进行三维有限元分析,分别研究铺装层厚度、钢桥面板厚度、横隔板间距、纵向加劲肋构造尺寸等钢箱梁桥面铺装体系的构造参数对铺装层最大拉应力、铺装层与钢桥面板层间最大剪应力和铺装层表面最大弯沉值等受力控制指标的影响.用此研究结果可指导珠江黄埔大桥钢箱梁桥面铺装层的设计.  相似文献   

7.
针对预应力混凝土连续刚构桥,进行环氧沥青桥面铺装力学分析。按照弹性层状体系理论建立力学分析模型,采用在车辆荷载作用下的有限元计算方法,分析桥面铺装层中的最大拉应力、最大剪应力和最大应变,并分析了在不同铺装层厚度、不同模量及不同荷载情况下对应力与应变的影响,最后得出竖向拉应力大于水平向拉应力、横桥向剪应力大于顺桥向剪应力,以及汽车超载将导致铺装层早期损坏的研究结论。  相似文献   

8.
为研究冬季极端气候下城市快速路钢桥面铺装的力学响应及适合该极端气候下的钢桥面铺装方案,解决冬季极端气候下钢桥面铺装在行车荷载作用下容易产生的开裂问题,利用ABAQUS建立钢桥面三维铺装体系模型,模拟不同铺装层厚度组合和不同工作温度等条件,计算“双层EA”结构和“下层EA+上层SMA”结构的铺装层上表面最大拉应力、最大拉应变、最大竖向位移及层间最大剪应力4个特征力学响应值,分析钢桥面铺装厚度对力学控制指标的影响,探究钢桥面铺装温度对力学控制指标的影响,以此进行冬季极端气候下城市快速路钢桥面铺装的结构组合方案优选。研究结果表明:相同铺装材料下,对比3种厚度组合的桥面铺装层上表面最大拉应力、最大拉应变、最大竖向位移及层间最大剪应力,均为下层2. 5 cm+上层3. 5 cm下层3 cm+上层3. 5 cm下层3 cm+上层4 cm;在-45~50℃范围内,随着温度升高,两种铺装结构的铺装层上表面最大拉应力和层间最大剪应力逐渐减小,铺装层上表面最大拉应变、最大竖向位移增大;“双层EA”结构铺装层上表面最大拉力大于“下层EA+上层SMA”结构;“双层EA”结构和“下层EA+上层SMA”结构铺装层上表面最大拉应变、最大竖向位移和层间最大剪应力较为接近;“下层3 cm EA+上层4 cm SMA”的铺装结构能够适应冬季极端气候工况。  相似文献   

9.
为保证数值分析的准确,以铺装层与钢板间的最大纵向剪应力和铺装层表面的横向最大拉应变为指标,对数值模型的横向尺寸、纵向尺寸、横隔板底约束以及单元大小等参数进行分析,得到优化模型.同时,以上海市桃浦路蕴藻浜桥工程为实桥研究对象,利用光纤光栅传感器对实桥铺装层的表面横向应变、纵向应变以及铺装层间横向应变、纵向应变进行静栽测试,并与计算值对照验证.研究结果表明:模型的横向尺寸取7个U肋的距离为最优尺寸;纵向取3跨时已可以保证计算精度,简支约束更能符合桥面整体约束状态;横隔板底部的约束应采用全固定约束.采用优化模型分析得到的计算值与实桥加载得出的实测值变化趋势基本一致,仅个别工况点位存在差异.  相似文献   

10.
为研究热轧纵肋正交异性钢桥面板铺装层的受力特性,首先建立了钢桥面铺装体系的精细化有限元分析模型,进行多轮位工况下的仿真分析,得到铺装层主要设计指标(表面最大拉应力、层底最大剪应力及最大竖向压应变)对应的最不利荷位,并与传统纵肋钢桥面铺装模型进行比较。对热轧纵肋钢桥面铺装层主要设计指标进行构造参数局部敏感性分析,得出各指标的主要影响参数。研究结果表明:当采用相同铺装方案时,热轧纵肋钢桥面铺装层最大竖向压应变相对传统纵肋钢桥面铺装层的更小,从而表现出更好的抗车辙能力;铺装层弹性模量、铺装层厚度与顶板厚度对各设计指标影响较大,而横隔板厚度与纵肋肋底厚度的影响较小。  相似文献   

11.
大跨径斜拉桥设纵隔板对钢桥面铺装力学特性的影响   总被引:4,自引:0,他引:4  
利用通用有限元ANSYS软件,计算分析大跨径斜拉桥设纵隔板对钢桥面铺装力学特性的影响,并分析纵隔板两侧加劲肋刚度对钢桥面铺装受力的敏感性.结果表明,铺装层表面最大横向拉应力/应变最不利荷位是荷载对称施加于一加劲肋正上方且紧靠纵隔板一侧,该荷位作用下计算加劲肋的挠跨比控制在要求的1/800~1/1 700范围内;铺装层表面最大纵向拉应力/应变和最大竖向位移最不利荷位均是荷载施加于相邻两加劲肋中心之间的正上方且跨过纵隔板.同时指出纵隔板上方铺装层表面出现更明显的应力集中,它可以通过改变纵隔板两侧加劲肋刚度得以降低,而且纵隔板上方铺装层表面最大横向拉应力/应变与纵隔板两侧加劲肋刚度有很好的相关关系.  相似文献   

12.
为了更合理地设计桥面铺装沥青混凝土加铺层,分析了桥梁结构参数对铺装结构的影响.首先调查并总结了混凝土桥面铺装主要病害类型,并基于病害控制的目的提出了桥面铺装体系的力学研究指标.其次采用三维有限元计算方法,选取常见的连续箱梁为例,计算分析了箱梁结构几何参数对铺装结构各力学指标的影响.结果显示,箱梁顶板厚度、梁肋高度对铺装层内最大拉应力、层内最大剪应力和层间最大法向拉应力的影响较大;而肋板上口宽度、肋板厚度对层内最大剪应力和层间最大法向拉应力的影响较大.故在铺装结构设计时应充分重视箱梁结构参数的影响.  相似文献   

13.
针对广东地区复合桥面铺装普遍存在的裂缝、车辙和推移等病害,该文运用有限元软件Ansys,建立带轮胎的典型复合桥面铺装结构实体模型,并进行了铺装层最不利荷载位置的确定和典型复合桥面铺装结构的力学分析。分析结果表明:综合选取3.65 m为铺装层的横向最不利位置,并以此作为荷载作用点进行铺装结构的数值模拟,铺装上层AC拉应力最大值位于轮胎接触表面,其最大横向拉应力值为0.704MPa,最大纵向拉应力值为0.655MPa;铺装下层AC主要受剪,为高温抗车辙的控制层;AC-PCC过渡界面处主要承受横、纵方向峰值均大于0.1 MPa的剪应力。  相似文献   

14.
该文以开口加劲肋正交异性钢桥面铺装体系作为研究对象,建立了包括桥面板和铺装的整体三维有限元分析模型,研究了荷载作用下铺装层的力学特性.分析表明,横向拉应力是开口加劲肋正交异性钢桥面铺装设计的一个重要控制指标;开口加劲肋正交异性钢桥面铺装层问剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料;开口加劲肋正交异性钢桥面铺装对车辆荷载的应力应变响应具有很强的局部效应.  相似文献   

15.
本文有针对地选取连续刚构桥沥青混凝土桥面铺装层最不利荷载位置,分别以最大水平拉应力、最大竖向拉应力和最大剪应力为控制指标,获取沥青混凝土桥面铺装层受铺装厚度、混合料模量及超载等因素的线性影响规律,从而为连续刚构桥沥青混凝土桥面铺装层的设计施工提供参考依据。  相似文献   

16.
大跨径钢桥面层铺装常见的破坏类型之一是铺装层表面拉应变过大引起的铺装层纵、横向开裂,这是与钢箱梁正交异性面板的加劲肋设计与布置密切相关的。本文将正交异性钢桥面板、铺装层作为整体建模,借助有限元分析软件详细研究了钢桥面板下梯形加劲肋三参数变化对铺装层表面变形的敏感性,并进一步从铺装材料模量变化和不同的荷位分布两方面分析了铺装层表面的横向拉应力分布规律,得到了一些有益的结论,以期为大跨径钢桥桥面铺装设计、桥面铺装层破坏指标的确定和钢桥面系结构刚度设计提供有益的参考。  相似文献   

17.
为分析铁路-公路荷载作用下公铁同面钢桁架梁桥面铺装层的受力特点,以枝城长江公铁同面连续钢桁架梁桥面铺装结构为研究对象,采用等效抗弯刚度法简化桥面铺装层,建立公铁同面大桥整桥有限元模型,分析铁路荷载、公路荷载及铁路—公路耦合荷载对公铁同面钢桁梁桥桥面铺装组合结构的影响。结果表明桥面铺装层主要控制应力为顺桥向的纵向拉应力,铁路荷载和公路荷载对最大纵向拉应力耦合效应的贡献率分别约为62.5%和37.5%,对最大横向拉应力的荷载耦合效应的贡献率分别约为61.7%和38.3%。在铁路-公路耦合荷载作用下,枝城长江公铁同面钢桁架梁桥面铺装层的最不利等效应力小于等效桥面铺装层材料的容许应力。  相似文献   

18.
钢桥面沥青铺装层裂缝破坏趋势研究   总被引:4,自引:3,他引:4  
充分利用钢箱桥面系统的结构规则性,运用有限条法离散桥面板系,同时用柔度法模拟模隔板对桥面钢板的支撑作用,计算分析了不同荷载位置下沥青铺装层顶面拉应变的变化规律,找出铺装层极限受力位置,得出横向拉应变远远大于纵向拉应变,横向拉应变是裂缝破坏的控制指标等结论,据此总结钢桥面沥青铺装层裂缝破坏趋势以供参考。  相似文献   

19.
为研究异形钢桥面铺装受力特征,选取典型异形钢桥并采用不同建模方法进行分析,与现场加载试验对比后发现,曲桥模型更为精确。采用曲桥模型分析后发现异形钢桥面铺装的受力特征与常规钢桥面铺装存在较大区别,其受力特征为:随着铺装层弹性模量的增加,最大拉应变处的层顶拉应变值不断减小,层底拉应变不断增大,层底最大剪应力则先增大后减小,之后再增大。  相似文献   

20.
由于我国日益增加的交通量,很多正交异性钢桥面铺装和正交异性钢板在服役期内都出现了很多病害。碳纤维(CFRP)具有轻质、高强、耐腐蚀等优越性,钢纤维混凝土具有沥青混凝土没有的刚度和普通混凝土没有的抗裂性能。对于将这两种材料用于钢桥面铺装中形成的组合桥面板,取涡河大桥主桥钢箱梁的一段正交异性钢板,分别对"无铺装","沥青混凝土铺装","钢纤维混凝土铺装"3种模型进行有限元模拟,比较正交异性钢板的应力、挠度、铺装层的纵向拉应力和横向拉应力,找出最不利荷载工况及变化规律。通过计算比较"沥青混凝土铺装"、"钢纤维混凝土铺装"和"CFRP-钢纤维混凝土铺装"3种铺装层的纵向和横向拉应力,得出CFRP网格筋对铺装层表面拉应力的控制作用。结果表明低弹模铺装时横向拉应力为控制应力,而高弹模铺装时纵向拉应力为控制应力,正交异性钢板应力最大部位发生在横隔板开孔附近,碳纤维网格筋可以有效地降低铺装面层的横向和纵向拉应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号