首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
在互联和自动驾驶环境下,生态驾驶具有显著的潜力,可提高交通效率并降低能源消耗和排放。本文探讨一种基于深度强化学习算法的生态驾驶策略,该算法可优化互联自动驾驶汽车(CAV)的纵向操纵和横向决策;将状态空间分为与车辆动态特性相关的局部变量,以及与信号交叉口相关的全局变量,确保CAV与环境之间的充分互动;奖励函数综合考虑了车辆的驾驶要求,与信号灯的协同作用以及全局节能激励因素;此外,设计一个典型的城市道路场景训练模型。结果表明,在信号灯和智能体输出协同控制下,本文提出的策略可以实现CAV的生态驾驶,并确保CAV准确驶入目标车道;在动态交通环境下进行仿真显示,通过控制多辆CAV引导人工驾驶车辆,本文方法可将交叉路口的通行能力提高约17.90%,并将交通系统的燃料消耗和污染物排放降低约8.76%。  相似文献   

2.
传统自动驾驶车辆以假设通行权为前提设计冲突消解算法,但在无信号交叉口存在道路通行权不明确情况,给自动驾驶车辆决策带来困扰.本文提出基于多车协作优化的无信号交叉口冲突消解方法,将多个自动驾驶车辆看成一个整体,利用多目标优化控制理论,计算分配给相互冲突车辆的期望速度规划,达到协作行驶的目的.设置协作与非协作式冲突消解仿真实验.结果表明:多车协作的冲突消解方法通过优化车辆联合行动,使交叉口车辆整体收益最大,各利益体间的收益更为均衡;与非协作行驶决策相比,冲突消解时间缩短,减少交叉口单车平均延误1~2 s,平均减少量约为5%.本文可为无信号交叉口自动驾驶车辆冲突时自主协同行驶提供参考.  相似文献   

3.
传统自动驾驶车辆以假设通行权为前提设计冲突消解算法,但在无信号交叉口存在道路通行权不明确情况,给自动驾驶车辆决策带来困扰.本文提出基于多车协作优化的无信号交叉口冲突消解方法,将多个自动驾驶车辆看成一个整体,利用多目标优化控制理论,计算分配给相互冲突车辆的期望速度规划,达到协作行驶的目的.设置协作与非协作式冲突消解仿真实验.结果表明:多车协作的冲突消解方法通过优化车辆联合行动,使交叉口车辆整体收益最大,各利益体间的收益更为均衡;与非协作行驶决策相比,冲突消解时间缩短,减少交叉口单车平均延误1~2 s,平均减少量约为5%.本文可为无信号交叉口自动驾驶车辆冲突时自主协同行驶提供参考.  相似文献   

4.
以自动驾驶系统为代表的汽车智能化技术将对汽车产业生态变革产生重大影响。首先,分析了自动驾驶技术发展路线、发展现状及人工智能(Artificial Intelligence,AI)的应用领域,指出AI在自动驾驶应用中面临的挑战。然后,提出一种基于AI的车云协同自动驾驶系统架构,分析了基于AI的智能驾驶终端软硬件架构与基于大数据的自动驾驶云端空间架构;结合车端与云端的AI集成应用问题、信息数据交互方法与车云协同技术,讨论了人工智能在自动驾驶系统的主要应用。  相似文献   

5.
在城市交通环境下,通过分析控制方法灵活性与稳定性的关系,提出一种考虑网络稳定性的多智能体强化学习控制方法。该方法将稳定状态引入信号控制决策模块,建立稳定规则库,在基本多智能体强化学习控制系统上,设置了一套独立运行的稳定监督装置,对违反稳定规则的控制策略进行校正,以约束控制方法灵活性的方式提升其稳定性,以监督控制的形式实现了多智能体强化学习控制。在时变交通流场景下,以典型路网进行VISSIM仿真试验。结果表明:基于稳定监督控制的多智能体强化学习控制方法提高了算法的运行效率,同时保证了控制效果,适用于复杂交通网络。  相似文献   

6.
针对智能车人机共融驾驶系统中人和自主驾驶系统的驾驶权连续动态分配问题,尤其是因建模误差导致的权重分配方法适应性低的难题,提出了基于强化学习的人机共融转向驾驶决策方法;考虑驾驶人的转向特性,搭建了基于双点预瞄的驾驶人模型,并采用预测控制理论建立了智能车自主转向控制模型,构建了智能车人机同时在环的转向控制框架;基于Actor-Critic强化学习架构,设计了用于人机驾驶权分配的深度确定性策略梯度(DDPG)智能体,以曲率契合度、跟踪精确性和乘坐舒适性为目标,提出了基于模型的收益函数;构建了人机共融驾驶权分配强化学习框架,包含驾驶人模型、自主转向模型、驾驶权分配智能体以及收益函数;为了验证方法的有效性,招募了8位驾驶人开展共计48人次的模拟驾驶试验。研究结果表明:在曲率适应性验证中,人机共融-DDPG方法优于人工驾驶和人机共融-Fuzzy方法,跟踪性平均提升70.69%、39.67%,舒适性平均提升18.34%、7.55%;在速度适应性验证中,车速为40、60和80 km·h-1条件下,驾驶人权重大于0.5的时间占比分别为90.00%、85.76%、60.74%,且跟踪性相轨迹和舒适性相轨迹都能有效收敛。可见,提出的方法能够适应曲率和车速变化,在保证安全性的前提下提升了跟踪性和舒适性。   相似文献   

7.
为了跟踪近年来智能网联汽车(CAV)协同生态驾驶策略的研究进展, 分析了车辆、驾驶行为、交通网络和社会这4类因素对CAV能耗的影响程度, 以车辆、基础设施和旅行者为对象对目前CAV生态研究进行分类, 重点分析了信号交叉口生态驶入与离开、生态协同自适应巡航控制、匝道合流区生态协同驾驶、生态协同换道轨迹规划和生态路由5种典型车辆协同生态驾驶应用场景的研究现状。分析结果表明: 相比人类驾驶方式, 在任何交通流量CAV 100%渗透率的条件下和低交通流量CAV部分渗透率的条件下, CAV油耗节省效果显著, 最高可达63%, 而具有部分智能化和网联化等级的CAV油耗可至少节省7%;现有研究较少考虑人机共驾情况下, 驾驶人反应延迟和自动控制器传输延迟导致的轨迹跟踪偏离; 现有研究将车车通信/车路通信假定为理想数据交互过程, 未考虑通信拓扑、传输时延、通信失效与基站切换等因素对CAV生态协同驾驶策略的影响; 现有研究较少探讨多车道、交叉口转向-直行共用车道和U型车道等交通场景, 以及不同智能网联等级CAV与人类驾驶汽车、行人、自行车等共存的混合交通条件下的生态驾驶策略; 受限于自动驾驶技术和基础设施尚未成熟和完善, 真实交通场景下的测试验证工作尚未开展; 车辆控制、车车通信、多车协同、混合交通流场景、半实物仿真测试和真实交通场景测试等方面将是CAV协同生态驾驶策略的进一步发展方向。   相似文献   

8.
正自动驾驶环境下车辆如何与交通基础设施协同,是交通基础设施规划、设计、建设所面临的问题。本文介绍了自动驾驶与车路协同技术以及相关法律规范现状,指出当前自动驾驶所面临的问题,提出了自动驾驶环境下市政交通基础设施建设的思考。一、自动驾驶与车路协同1.自动驾驶自动驾驶是指通过给车辆装备智能软件和多种感应设备,包括车载传感器、雷达、GPS以及摄像头等,根  相似文献   

9.
车辆换道行为是微观交通流中的典型驾驶行为之一。车辆换道决策模型研究可以为自动驾驶汽车协同自适应巡航控制(cooperative adaptive cruise control,CACC)提供理论基础,也能有效减少车辆危险换道行为引发的交通事故。为使换道模型更加适应动态道路交通环境,以美国交通部联邦公路管理局NGSIM项目实测试验数据为依据,分析车辆换道决策时自身车辆速度、加速度及其与交互车辆相对时距等相关特征参数,并运用贝叶斯网络人工智能理论,建立车辆换道决策模型,通过仿真分析并与NGSIM实测数据进行对比。结果表明:基于贝叶斯网络的换道决策模型的平均决策准确度和识别率可达到89%以上,具有良好的换道决策效果,可为智能车辆协同自适应巡航控制及自动驾驶深度学习提供理论参考。  相似文献   

10.
信号交叉口的车速控制不当会降低车辆的燃油经济性甚至引起追尾碰撞事故,车路协同环境下的车速引导系统可以有效提高信号交叉口处的通行效率和燃油经济性。现有车速引导研究大多忽略了驾驶员风格的差异性,将导致驾驶员无法准确跟踪引导速度。针对该问题,建立考虑驾驶风格的闭环反馈车速引导模型。首先,分析不同风格驾驶员车辆最大纵向加速度的概率分布;其次,研究闭环反馈车速引导方法,使驾驶员更准确地跟踪引导车速;然后,基于机会约束规划方法优化闭环反馈车速引导模型,使模型更加符合驾驶员的不同风格;最后,在MATLAB/ Simulink环境中设计仿真场景,对激进型、适中型和保守型3种闭环反馈车速引导模型进行仿真分析。仿真结果表明:相较于传统车速引导模型,本文模型可使不同风格的驾驶员更容易跟踪引导车速,其中,激进型和适中型车速引导模型可以使车辆以更短的时间通过交叉路口,保守型车速引导模型可以提高车辆在绿灯相位通过交叉口的概率。本文方法可以有效地提高信号交叉口的通行效率。  相似文献   

11.
为保障无人驾驶环境下特种车辆在典型Y型匝道合流区快速平稳通过,研究了全网联自动驾驶车辆(CAV)集中控制场景中考虑特种车辆优先通行的协同控制方法;通过博弈确定了控制区内合流序列排布,考虑特种CAV任务优先属性与车型特征,分别设计了与加速度关联的特种CAV车道优先属性、与时间关联的车种优先属性和与加速度变化率关联的车型稳...  相似文献   

12.
为使混行交通流下智能网联车辆(Connected and Automated Vehicles, CAV)实现对人工驾驶车辆(Human-driven Vehicle, HV)前照灯灯语意图(Vehicle Headlights Intention, VHI) 的识别,弥补车对车(Vehicle to Vehicle, V2V)和鸣笛意图识别技术的不足,更好地与HV交互沟通,提出CAV对HV的VHI识别模型.模型包括:灯光感知、光数据处理、VHI识别3个模块,灯光感知模块通过RGB(Red-Green-Blue, RGB)和HSV(Hue-Saturation-Value, HSV)颜色空间感知前照灯(Vehicle Headlights, VH),采用KLT(Kanade-Lucas-Tomasi Tracking,KLT)和车辆匹配算法定位跟踪发出灯语的HV;光数据处理模块采用光通道增益算法计算光辐射通量变化; VHI识别模块基于双层隐马尔可夫模型(Double-layer Hidden Markov Model,DHMM)辨识VH 闪烁次数和HV行驶状态,实现VHI识别.在3种灯语示意典型场景下的实验结果表明:1 s内 VH感知准确率为96.8%,定位跟踪精度小于1°,VHI识别率为96.6%,满足混行交通环境下 CAV对HV驾驶意图的识别要求,基本保证实时性,为混行交通流中CAV自动驾驶决策提供理论依据.  相似文献   

13.
为使混行交通流下智能网联车辆(Connected and Automated Vehicles, CAV)实现对人工驾驶车辆(Human-driven Vehicle, HV)前照灯灯语意图(Vehicle Headlights Intention, VHI) 的识别,弥补车对车(Vehicle to Vehicle, V2V)和鸣笛意图识别技术的不足,更好地与HV交互沟通,提出CAV对HV的VHI识别模型.模型包括:灯光感知、光数据处理、VHI识别3个模块,灯光感知模块通过RGB(Red-Green-Blue, RGB)和HSV(Hue-Saturation-Value, HSV)颜色空间感知前照灯(Vehicle Headlights, VH),采用KLT(Kanade-Lucas-Tomasi Tracking,KLT)和车辆匹配算法定位跟踪发出灯语的HV;光数据处理模块采用光通道增益算法计算光辐射通量变化; VHI识别模块基于双层隐马尔可夫模型(Double-layer Hidden Markov Model,DHMM)辨识VH 闪烁次数和HV行驶状态,实现VHI识别.在3种灯语示意典型场景下的实验结果表明:1 s内 VH感知准确率为96.8%,定位跟踪精度小于1°,VHI识别率为96.6%,满足混行交通环境下 CAV对HV驾驶意图的识别要求,基本保证实时性,为混行交通流中CAV自动驾驶决策提供理论依据.  相似文献   

14.
高坤  杨冰 《城市公共交通》2013,(8):28-31,36
通过车路协同系统,减少车辆行驶过程中加速、减速怠速工况次数是实现经济驾驶的一种新方法。结合油耗理论、驾驶行为和车速引导等知识体系,设计出一套不同于传统车速引导的公交车经济驾驶车速引导机制与计算方法。机制与算法在后续研究中,通过VISSIM仿真与驾驶模拟器平台实验和实际实地实验验证了其合理性,结果显示实现经济驾驶的效果良好。  相似文献   

15.
交通拥堵已成为很多大中城市普遍存在的社会问题。信号控制作为缓堵保畅的重要措施之一,愈发受到社会关注。信号优化手段可分为模型驱动和数据驱动两类,且随着交通大数据的不断充实,基于强化学习的数据驱动方法日益成为新兴发展方向。然而,现有数据驱动类研究主要偏重于决策模型设计,缺乏对智能体结构的探讨;同时,在多路口协同方面多采用分布式策略, 忽略了智能体之间信息交互,无法保障区域层面的整体最优性。为此,本文以干线信号为对象, 构建一种多智能体混合式协同决策的信号优化方法。首先,针对交通状态的多样性、异构性及数据不均衡性,设计分布训练-分区记忆的单智能体决策模型,并优化状态空间和回报函数,界定单路口控制的最佳方案;其次,融合分布式和集中式学习的模型优势设计多智能体交互方法,在单路口分布式控制的基础上,设置中心智能体评价局部智能体的决策行为并反馈附加回报以调整局部智能体的决策模型,实现干线多信号的协同运行。最后,搭建仿真平台完成效果测试与算法对比。结果表明:新方法与独立优化和分布式协同相比,在支路交通流基本不受影响的前提下, 干线停车次数分别降低了14.8%和13.6%,具有更好的控制效果。  相似文献   

16.
车辆无人驾驶是智能交通系统的一个重要部分,其目标是开发在高速公路和城市道路环境下的辅助驾驶系统,旨在帮助乃至取代驾驶员,实现车辆自动控制和自动驾驶,减少交通事故发生,提高道路交通系统的效率,因此提出了一种基于机器视觉和模糊控制实现智能车辆自主行驶的方法. 该方法以CMOS摄像头为路径识别传感器,通过图像分析提取车道中心线,并引入速度反馈,形成闭环控制,建立一个由两个模糊控制器组成的分级模糊控制器控制车辆转向,并使用模糊控制代替传统的PID速度控制来控制速度. 和常规的PID算法及模糊控制算法相比,改进的模糊控制算法使智能车在道路上更快速、平稳地运行,并且在转弯处的超调更小.  相似文献   

17.
建立了拖拉机自动驾驶横向控制的力学模型,提出了一种用于拖拉机自动驾驶的基于神经元学习的复合模糊控制方法,设计了模糊控制规则以及神经元学习整定PID(比例积分微分)的算法。用simulink对基于神经元学习的复合模糊控制方法进行了仿真验证,结果表明,所提出的方法和规则用于拖拉机自动驾驶是可行的。  相似文献   

18.
车辆无人驾驶是智能交通系统的一个重要部分,其目标是开发在高速公路和城市道路环境下的辅助驾驶系统,旨在帮助乃至取代驾驶员,实现车辆自动控制和自动驾驶,减少交通事故发生,提高道路交通系统的效率,因此提出了一种基于机器视觉和模糊控制实现智能车辆自主行驶的方法. 该方法以CMOS摄像头为路径识别传感器,通过图像分析提取车道中心线,并引入速度反馈,形成闭环控制,建立一个由两个模糊控制器组成的分级模糊控制器控制车辆转向,并使用模糊控制代替传统的PID速度控制来控制速度. 和常规的PID算法及模糊控制算法相比,改进的模糊控制算法使智能车在道路上更快速、平稳地运行,并且在转弯处的超调更小.  相似文献   

19.
考虑网联自动驾驶车辆(Connected Autonomous Vehicle, CAV)应用先进的车联网与自动驾驶技术,可以采用智能交叉口的组织形式,大幅提升交叉口的通行效率,为降低CAV与人工驾驶车辆(Human-driven Vehicle, HV)混行条件下城市交通系统的整体出行成本,提出智能交叉口在城 市交通网络中的布局优化问题,建立数学优化模型并求解。首先,基于对两类车辆行驶特性的分析,建立混合用户均衡模型,描述CAV与HV的路径选择行为;其次,从交通规划者的角度,以系统最优为目标,整合混合用户均衡模型,建立面向新型混合交通流的智能交叉口网络布局优化模型,并利用改进的遗传算法求解;最后,选取Sioux-Falls交通网络作为案例分析,验证模型与算法的有效性,并研究CAV渗透率变化对优化结果的影响。研究表明,智能交叉口在城市路网中的合理规划极大地提高了新型混行场景下城市交通系统的出行效率,同时,大幅降低了由于网联自动 驾驶单方面技术优势带来的CAV与HV的出行效率差距,增进了出行公平性。  相似文献   

20.
新型混合交通环境下的交叉口交通控制可通过信号灯控制与自动驾驶车辆的轨迹控制协同实现,能够极大地优化道路通行资源利用效率。已有研究中,信号配时与车辆轨迹集中优化的控制策略难以应用于车辆自组织控制的现实场景,且往往计算复杂度较高。本文提出一种无中心框架下基于逻辑的交叉口信号与车辆轨迹协同控制方法。基于协同理论中的快慢变量主动伺服控制原理,设计一种交叉口信号配时慢变量与车辆轨迹策略快变量协同框架,并分别提出基于逻辑的信号配时优化和网联自动驾驶车辆轨迹协同控制方法。协同控制方法可以在车辆自主控制的条件下,一方面,实现交叉口信号配时动态适应交通需求;另一方面,实现网联自动驾驶车辆主动优化驾驶速度,高效通过交叉口。而且网联自动驾驶车辆在进口道可引导混合车队高效通过交叉口,降低绿灯启动损失,提高交叉口通行效率。仿真实验表明,本文的协同控制方法相较于传统控制方法可显著降低交叉口车辆平均延误,同时,基于逻辑的决策模型可实现快速求解。通过对网联自动驾驶车辆控制策略关键参数的敏感性分析,进一步讨论新型混合交通流交叉口通行公平性,并比较在不同网联自动驾驶车辆渗透率下的控制效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号