首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 718 毫秒
1.
为提高铁路货车制动安全性、减轻闸瓦检修负担,以闸瓦上下端压力比来评价闸瓦磨耗速率,提出延长闸瓦使用寿命的措施.首先,根据铁路货车基础制动装置抽象出闸瓦制动瞬时受力的理论模型.然后,运用解析法求得瞬时闸瓦上下压力比与闸瓦上下端磨耗量的关系.最后,在多体动力学软件Recur Dyn环境中构建转向架基础制动装置的刚柔耦合动力学模型,通过仿真实验,验证解析法结论.闸瓦受力理论分析表明,磨耗初期闸瓦上下端磨耗量不等、磨耗速率不等是导致闸瓦偏磨的根本原因.当闸瓦一端磨耗量达到24~25 mm时,闸瓦上下压力相等.仿真结果也说明,当下端磨耗量不变时,闸瓦上下端压力比随上端磨耗量的增大而增大.综合理论与仿真结果,建议当车辆检修后发现各位闸瓦一端磨耗量达到16 mm时,将闸瓦上下对调,以达到延长闸瓦使用寿命的目的.研究成果为铁路货车闸瓦上下偏磨的相关研究提供理论依据及技术支持.  相似文献   

2.
从闸瓦和车轮的三维接触模型入手,建立用于数值分析的有限元模型,通过Marc软件提供的有限元方法,采用直接热-机耦合进行分析不同工况时踏面的温度和应力.结果表明,制动初速度,闸瓦压力,闸瓦材料对踏面的温度和热应力都会有影响.不同计算工况下踏面上温度和应力极值出现的位置一致,在所用车轮模型踏面上距离左边界40~55 mm处.在频繁制动后,该位置受到热损伤积累,将会出现沟槽等异常磨耗.  相似文献   

3.
针对铁路货车普遍的闸瓦磨耗不均匀及不易缓解等现象,运用解析法和多体动力学仿真分析法,预测了集成制动系统的制动和缓解性能.首先,根据其结构组成和工作原理,计算各闸瓦压力和缓解阻力;然后,在RecurDyn软件中建立虚拟样机,针对制动、缓解两种工况分别进行仿真实验,分析各位闸瓦的压力分布、缓解时间、缓解阻力、缓解位移,从而预测制动系统的制动和缓解性能.研究发现集成制动装置制动时,L1位制动力比L2位大8.47%,L1位比R1位大5.51%,可能导致踏面磨耗不均匀;缓解时,各位闸瓦缓解时间基本相同,当摩擦系数设为0.15时,可保证缓解时各闸瓦的缓解位移均匀及各轮瓦的间隙相同.预测结果为铁路货车集成制动系统的运用改善及国产化提供理论参考依据.  相似文献   

4.
为提高铁路运输的安全与效率,以货运列车制动闸瓦上下端的压力分布来评价闸瓦磨耗程度,提出可行的改善措施.首先,对闸瓦制动单元的力学模型进行理论分析,发现对称性结构设计是闸瓦偏磨的主要原因.然后,将闸瓦组件设计成非对称结构,使其作用面上的压力重新分布,达到改善偏磨的效果.最后,在Recur Dyn多体动力学软件环境中构建制动系统的刚柔耦合动力学模型,通过仿真实验,对比分析改善前后制动闸瓦上下端的应力分布.闸瓦制动单元的理论分析表明,当非对称闸瓦的偏心距取27 mm时,理论上闸瓦上下端压力比由1.19降为1.00.仿真结果也说明,对称性闸瓦上下端压力分布很不均匀,改进设计后的非对称闸瓦,其偏磨得以明显改善.研究成果为铁路货车制动系统的性能改进提供理论依据及技术支持.  相似文献   

5.
以ASME标准中的基于等效结构应力的主S-N曲线法对闸瓦托结构中的14条焊缝疲劳寿命进行分析.建立闸瓦托有限元模型,根据实际制动工况分析其承载载荷,计算制动过程中焊缝区域的应力分布,基于等效结构应力算法将应力进行转换,进而求解各条焊缝在实际工况载荷的疲劳寿命,并对疲劳寿命较低的危险焊缝进行预测及分析,结果表明该闸瓦托分别存在两条对称的主要危险焊缝和两条对称的次级危险焊缝.  相似文献   

6.
运用现场试验与多体动力学仿真相结合的方式,提出一套反映C80单元制动装置真实接触状态的建模与模型验证方法;运用RecurDyn仿真分析平台,通过仿真试验分析法对制动装置的运用性能进行分析预测。研究结果表明:闸瓦靠近轮缘一侧的接触应力较大,2、3位闸瓦下部应力较大,易引起闸瓦偏磨;制动梁立柱连接处存在较大应力,游动、固定杠杆连接部位最大瞬时接触应力分别为137和127 MPa;C80单元制动装置中12号和15号销轴受力最大,在空车与重车制动时销轴所受合力分别超过10和50 kN,现场检修时应着重检查游动杠杆、中拉杆、固定杠杆、制动梁立柱和立式制动杠杆及其连接部;动态运行时,制动梁朝着车辆运行反向窜动导致闸瓦与车轮异常间歇性碰撞接触,且随着运行速度增大轮瓦接触力有增大趋势,易导致车轮非正常磨耗和闸瓦偏磨。研究方法为预测铁路货车制动装置等复杂机构的运行规律与性能预测提供一种新技术,可用于指导C80等铁路货车制动装置的运用检修规程制定与设计改善。   相似文献   

7.
焊接构架闸瓦托吊座与制动杠杆支座强度分析   总被引:1,自引:0,他引:1  
通过对焊接构架闸瓦托吊座和制动杠杆支座进行受力分析,确定了两者载荷工况,并对其进行了有限元分析,确定出闸瓦托吊座和制动杠杆支座上的应力分布.在此基础上,进行了静强度和疲劳强度校核.研究结果表明,焊接构架闸瓦托吊座和制动杠杆支座静强度满足TB/T 1335-1966的规定,疲劳强度满足AAR-M213-8V的要求.  相似文献   

8.
车轮型面磨耗对车辆服役性能的影响   总被引:3,自引:0,他引:3  
针对动车组的1节车辆, 利用WP-D 车轮外形测量仪定期实测每个车轮的外形与轮径, 得到5组车轮型面磨耗工况, 并结合所选车辆的结构参数和运行线路特点, 利用多体动力学软件进行了车辆动力学仿真,分析了车辆在不同磨耗工况下的动力学特性. 仿真结果表明: 为保证车辆400 km/h 以上的临界速度, 车轮等效锥度应不大于0.4; 磨耗车轮的型面下凹深度超过2 mm 时, 车辆运行安全性和曲线通过性能将显著下降, 在最恶劣工况时,平稳性指标增幅达54%, 轮轴横向力增大了100%.  相似文献   

9.
根据轨道车辆电空复合制动的工作原理,以全车制动系统为研究对象,一动一拖制动控制单元为研究载体,基于多学科协同分析方法,建立了控制子系统、气制动子系统、电制动子系统与制动执行子系统模型,基于各子系统之间的关联参数,搭建了制动系统的联合仿真平台;根据广佛二期车辆的实际参数,模拟列车电制动失效工况下常用全制动的运行工况,计算了空走时间、制动时间、制动距离、制动减速度、瞬时速度、平均减速度、纵向冲动、车钩力、利用黏着系数与制动缸压力,并与试验结果进行了对比,以验证集成化仿真平台的可行性和有效性。仿真和试验结果表明:在制动稳定后,仿真和试验的列车制动减速度约为1.25m·s~(-2),仿真的平均减速度约为1.05m·s~(-2),试验的平均减速度约为1.09m·s~(-2),误差较小,且均符合常用全制动的平均减速度不小于1.0m·s~(-2)的要求;在常用全制动工况下,采取等磨耗制动力分配的动、拖车利用黏着系数不同,动车约为0.13,拖车约为0.12,但都未超过0.16的最大可利用黏着系数的限制;虽然动、拖车的质量不同,但等磨耗工况下施加常用全纯空气制动后,试验和仿真的动、拖车的制动缸压力均相等,约为420kPa。由此可见,可利用基于多学科协同分析的联合仿真平台对轨道车辆制动系统进行车辆级的研究,为制动系统的开发和设计优化提供理论依据。  相似文献   

10.
根据L-B型组合式制动梁的结构特点,运用I-DEAS软件建立基于接触的L-B型制动梁有限元模型,并计算了制动梁在不同工况下的应力分布,计算结果表明应力集中主要发生在闸瓦托滑块根部,这与实际运行中出现的故障较为吻合,为制动梁的改进设计和结构优化提供了依据.  相似文献   

11.
依据鼓式制动器结构特点和传热学理论,分析了鼓式制动器生热散热过程,运用有限元软件ANSYS建立某鼓式制动器瞬态温度场仿真模型,得出在重复制动工况下制动鼓的温升过程,分析了瞬态温度场的变化情况。根据国家标准进行热衰退试验,通过修改仿真模型的热边界条件,使仿真温度曲线与试验曲线相吻合,确定了鼓式制动器瞬态温度场分析的边界条件及模拟方法。  相似文献   

12.
为在重载钢轨打磨廓形优化设计中最小化钢轨打磨量,建立了打磨量的钢轨廓形对齐及计算方法,设计以轮轨磨耗指数、轮轨接触应力以及钢轨打磨量为优化子目标的综合优化评价模型,并对不同优化策略的优化结果进行了分析. 首先,通过矩阵旋转变换、曲线拟合及样条插值等理论建立钢轨廓形自动对齐算法,并计算目标廓形打磨量;其次,考虑轮轨磨耗指数、接触应力以及钢轨打磨量,建立综合优化目标函数,采用遗传算法并联合车辆轨道动力学仿真模型求解优化钢轨打磨廓形;最后,运用所建立的钢轨廓形优化设计模型计算分析不同优化策略的设计结果. 研究结果表明:同时考虑轮轨磨耗、轮轨接触应力和钢轨打磨量,优化后曲线外、内轨廓形平均磨耗指数相比初始廓形下降68.9%,内轨接触应力下降39.1%,打磨量下降21.8%,优化效果最佳;只考虑轮轨磨耗和接触应力时,优化后曲线外轨廓形磨耗指数和内轨接触应力下降较为明显,但打磨量下降速率相对较慢,仅为11.3%;只考虑打磨量时,优化后钢轨廓形打磨量下降最快,为24.4%,但轮轨接触应力显著变大.   相似文献   

13.
A certain number of railway brake discs made of gray cast iron, showed the presence of small cracks only after a few thousand kilometers. To investigate main causes of a brake disc failure, numerical analysis was done by using ABAQUS software. Numerical analysis resulted from a physical model of heat flux in dependence of braking time. Physical model was applied considering all demands and presumptions given by industry representatives.  相似文献   

14.
以山区客运专线钢轨磨耗量以及运营安全性作为研究对象,数值仿真作为手段,仿真计算基于Kalker线性蠕滑理论,借鉴Elkins磨耗指数模型,考虑轨道不平顺,车轮踏面与钢轨型面及弹性地基影响,使用SIMPACK软件建立动车组模型仿真,计算了蠕滑率和蠕滑力的大小,讨论了曲线半径对蠕滑率、钢轨磨耗量、减载率及脱轨系数的影响。比较了不同曲线下,两种踏面的动力学性能。随着圆曲线半径减半,LMa(高速动车组踏面)的左轨磨耗量增大了大约6倍左右。从磨耗量和安全性的角度对山区客运专线设计方法提出建议。  相似文献   

15.
高速动力车基础制动装置的设计思路   总被引:1,自引:0,他引:1  
基础制动装置是高速动力车不可缺少的重要组成部分。基础制动装置应保证在满足高速列车制动距离要求的前提下,尽量减轻重量,并根据不同的转向架结构形式采用不同的制动盘结构。制动时优先投入动力制动以减轻制动盘和制动闸片的热负荷及磨耗。  相似文献   

16.
基于附着系数曲线长度的路面识别仿真研究   总被引:3,自引:3,他引:0  
要使汽车制动时能够充分利用路面的附着条件,需要对路面状态进行识别。以滑移率区间[0,0.1]上的附着系数曲线长度作为路面识别的参数指标,在Kiencke轮胎—路面模型的基础上给出了7种典型路面的识别区间,据此在制动时完成路面识别。使用单轮车辆模型,在跃变路面上进行了仿真试验,结果表明:该方法对单一路面的识别时间约0.025s,对跃变路面的识别时间约0.01s,对不同路面附着条件的利用明显改善,提高了路面识别的快速性、准确性和制动性能。  相似文献   

17.
为预测高速铁路钢轨的磨耗量,建立了轨道结构静力学有限元模型和动力分析模型,基于Archard磨耗理论从曲线半径、行车速度、轮轨横移量3个角度计算分析了钢轨磨耗量,利用垂直磨耗深度0.5mm的磨耗量为界反算出通过总质量.计算结果表明:曲线地段钢轨磨耗较为严重,垂直磨耗深度为0.5mm时,直线上通过的总质量为45.9~60.0 Mt,曲线上通过仅为22.9~29.9Mr;相同曲线半径条件下,单轮作用下的接触斑处钢轨磨耗量随着行车速度提高而增大;相同速度和曲线半径下,钢轨磨耗量随着轮轨横移量增大而增大.  相似文献   

18.
为降低70%低地板有轨电车的车轮磨耗,分析了刚性轮对与独立旋转车轮的导向机理,建立了拖车采用传统刚性轮对与拖车采用独立旋转车轮的两种车辆模型,计算了两种车辆模型在不同工况下的动力学性能,并根据Archard磨耗模型对比分析了两种模式下的车轮磨耗情况. 计算结果表明:车辆直线运行时,拖车采用刚性轮对的车辆稳定性及横向平稳性较好,车轮磨耗位置居中且磨耗量小于独立旋转车轮;车辆运行于大半径曲线时采用刚性轮对的车辆曲线通过评价指标较好,磨耗量较独立旋转车轮小;随着曲线半径的减小,采用刚性轮对的车辆曲线通过性能迅速恶化而采用独立旋转车轮的车辆各指标变化幅度较小,在半径为100 m及以下的曲线时,采用独立旋转车轮的车辆曲线性能更优且车轮磨耗小于刚性轮对,特别在曲线半径为25 m时,独立旋转车轮磨耗量仅为刚性轮对的60%左右,拖车采用刚性轮对的车辆在直线及大半径曲线时性能较优,拖车采用独立旋转车轮的车辆更适用于小半径曲线.   相似文献   

19.
本文分析了非对称轴类零件的热挤镦成形特点,设计了一套适合挤镦成形非对称轴类件的模具装置该装置已用于转向摇臂铀和制动蹄的精锻生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号